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SUMMARY: A novel antioxidant, butylated caffeic acid (BCA) was rationally designed by adding a tert-
butyl group to caffeic acid, which was synthesized at a high yield (36.2%) from 2-methoxy-4-methylphenol 
(1) by a four-step reaction including Friedel-Crafts alkylation, bromine oxidation, ether bond hydrolysis and 
Knoevenagel condensation. Its antioxidant capacity was much stronger than common commercial antioxidant 
tert-butyl hydroquinone (TBHQ) and its mother compound, caffeic acid, in both rancimat and deep frying tests. 
When investigated via the DPPH method, the antioxidant capacity of BCA was almost equal to TBHQ, but 
lower than caffeic acid. BCA could be a potentially strong antioxidant, especially for food processing at high 
temperatures such as deep frying and baking.
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RESUMEN: Ácido cafeico butilado: un nuevo y eficaz antioxidante. Se diseñó razonadamente un nuevo antioxi-
dante, el ácido cafeico butilado (BCA) mediante la adición de un grupo terc-butilo al ácido cafeico, que se sin-
tetizó con un alto rendimiento (36,2%) a partir de 2-metoxi-4-metilfenol, reacción de Friedel-Crafts, oxidación 
de bromo, hidrólisis del enlace éter y condensación de Knoevenagel. Su capacidad antioxidante fué mucho más 
fuerte que la del antioxidante comercial mas común el terc-butil hidroquinona (TBHQ) y la de su compuesto 
madre el ácido cafeico, tanto en rancimat como en pruebas de fritura. Cuando se investigó mediante el método 
DPPH, la capacidad antioxidante de BCA fue casi igual a TBHQ, pero menor que la del ácido cafeico. BCA 
podría ser un fuerte antioxidante potencial, especialmente para el procesamiento de alimentos a alta tempera-
tura, tales como freír y hornear.
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1. INTRODUCTION

As widely known, dietary lipids are highly 
acceptable by consumers because of the palatabil-
ity, typical smell and taste of their products. They 
play an important role in food nutrition and flavor 
during processing. Meanwhile, the exposure of lip-
ids to air triggers their autoxidation, giving rise to 
rancid odors and flavors, with the decomposition 
of nutritional components (flavors, essential amino 
acids, fat-soluble vitamins, etc.), formation of sec-
ondary oxidation products and reduction in food 
safety. Lipid oxidation is one of the main causes of 
food quality deterioration, with the production of 
aldehydes, ketones, alcohols, hydrocarbons, volatile 
organic acids, and epoxy compounds. With an ade-
quate understanding of how this oxidative degrada-
tion actually takes place in fats and oils, it has been 
determined that the autoxidation of unsaturated 
fatty acids occurs via a free radical chain reaction, 
including initiation, propagation, and termination.

Currently, with the brief  background on how oxi-
dation takes place in lipids, many efforts such as bio-
logical, physical, and chemical methods have been 
made to reduce oxidation (Akoh and Min, 2008). 
The best method, however, is still the addition of 
strong antioxidants to prevent the deterioration of 
lipids (Chen and Ho, 1995; Rojas and Brewer, 2007).

Among the commercial antioxidants, TBHQ is fre-
quently applied during deep frying due to its low price 
and effective antioxidant capacity (Shahidi et  al., 
1992). TBHQ, an aromatic organic phenol, is chemi-
cally synthesized. It is a derivative of hydroquinone, 
substituted with a tert-butyl group, and has good 
solubility in lipids (Emerton and Choi, 2008). The 
maximum level of TBHQ allowed in a finished prod-
uct like frozen fish stored for 14 weeks is 120 mg/kg 
(Hsieh and Regenstein, 1991). The addition of TBHQ 
in lipids does not cause discoloration even when irons 
are present, and does not change the flavor or odor of 
the material. In addition, TBHQ is effective at early 
storage times in lengthening the induction period 
before oxidation is initiated, though it is not effec-
tive for baked food applications (Emerton and Choi, 
2008; Hsieh and Regenstein, 1992).

The antioxidant capacity of TBHQ, however, 
decreases after a while because of the following rea-
sons: It is absorbed by fried products; it evaporates 
under high temperature due to its low molecular 
weight (Hwang et al., 2013). Other disadvantages 
include being questioned for possible negative side-
effects in humans (Van Esch, 1986).

As a natural antioxidant, caffeic acid (3,4-dihy-
droxycinnamic acid) has been studied in many reports. 
It is among the major hydroxycinnamic acids present 
in wine. It shows not only a good biological activity 
with known antiviral, anti-inflammatory, antican-
cer properties and heart protecting effects, but also 
an efficient antioxidant capacity in vitro, which has 

also been utilized extensively as a potent antioxidant 
(Gülçin, 2006). However, caffeic acid exhibits poor 
solubility in oils due to its carboxyl group, which 
decreases its fat-solubility in practice.

It is highly desirable to develop a new antioxi-
dant of  better lipid solubility than caffeic acid with 
antioxidant capacity as strong as BCA (butylated 
caffeic acid, or systematic nomination: (E)-3-(3-
(tert-butyl)-4,5- dihydroxyphenyl) acrylic acid), 
which could be utilized for food preservation. This 
study is aimed at investigating the structural modi-
fication of  caffeic acid via its alkylation and exam-
ining its antioxidant activity in food processing.

The modification of structures such as polyphe-
nolic compounds increases their solubility in oils, 
and speeds up the leaving out of ortho-hydrogen, 
thereby, improving antioxidant capacity in oils 
(Huang et al., 2014; Zhang et al., 2004). Hence, 
structural modification is a convenient and efficient 
method that can be employed to improve the solu-
bility of caffeic acid in oils by adding long-chain 
alkanes or the tert-butyl group at the ortho-aromatic 
ring, without decreasing phenol hydrogens.

Considering the steric hindrance effect and lipid 
solubility, the influence of the tert-butyl group is 
better than long-chain alkanes. At first, the tert-
butyl group was added to the ortho-aromatic ring 
directly through Friedel-Crafts alkylation reaction 
from caffeic acid, although it proved abortive after 
a series of experimental condition alterations such 
as material ratio, temperature, the pattern of mate-
rial addition and solvents. It could be that the den-
sity of electrons in benzene decreased because of 
the location-based effects of the acrylic acid group. 
Therefore, two main steps were devised: the tert-
butyl group was added to the main body of benzene 
without location-based effects and then it was con-
jugated by the group of acrylic acid.

2. MATERIALS AND METHODS

2.1. Materials

Lard was rendered in the laboratory and stored 
at -18 °C for use. Commercial soybean oil was 
purchased from Wilmar International Limited 
(Shanghai, China). Potatoes were purchased from a 
local market. Other chemicals were obtained from 
Sinopharm Chemical Reagent Co. Ltd. The solvents 
employed were of AR grade.

All of the reactions were monitored by thin-layer 
chromatography (TLC) performed on silica gel GF254 
(homemade). Ultraviolet (UV) spectra were recorded 
with a UV-2450 spectroscopic instrument (Shimadzu 
Corp, Kyoto, Japan). The quartz cell was used as 
a vessel. The protection factors for antioxidants 
were measured by the rancimat method (Metrohm, 
Shanghai, China). All NMR  experiments were con-
ducted on a Bruker Avance 500 MHz spectrometer 
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(Bern, Switzerland) operating at 500.1 MHz for 1H 
and 125.8 MHz for 13C, respectively. Chemical shifts 
were reported in ppm using TMS as internal stan-
dard. The single-crystal structure analysis was per-
formed using X-ray diffraction on a Bruker Smart 
Apex II diffractometer (Germany) at 296K, μ (Cu/
Kα)=0.108 mm-1, Dcalc =1.354 mg/m3, 5584 reflec-
tions were measured, 1935 were unique (Rint=0.0147). 
The structure was dissolved with SheLXS a structure 
solution program using Direct methods and refined 
with SheLXL refinement  package using least squares 
minimization (Zhou et al., 2016).

The samples were examined in duplicate. Pearson’s 
correlation test and t test were conducted using 
Origins 8 (Origin Lab, MA, United States). Reported 
data show standard deviation below 5%. Statistical 
significance has p values always below 0.05.

2.2. General synthesis of BCA

The compounds 2-4 were prepared according to 
earlier methods (Saiz-Poseu et al., 2012; Wang et al., 
2006) with slight modifications (Scheme 1).

Preparation of 2-(tert-butyl)-6-methoxy-4-methylphe-
nol (2): 7.80 mL of 2-methoxy-4-methylphenol (1) 
(61.7 mmol, 1 equiv) were added to 85% phosphoric 
acid (19 ml) and tert-butanol (30 ml, 328.4 mmol, 5.32 
equiv) at 90 °C. After stirring for 7 hours, and con-
centrated to remove most of the tert-butanol under 
reduced pressure, ethyl acetate (100 mL) and water 
(10 mL) were added. The organic phase was dried over 
Na2SO4 and concentrated under reduced pressure. The 
crude products were purified with flash chromatogra-
phy (petroleum ether:ethyl acetate= 20:0.5) to yield 2, 
a light, colorless oil (8.50 g, 71%). 1H NMR (500MHz, 
CDCl3, ppm) δ1.49 (s, 9H), 2.37 (s, 3H), 3.93 (s, 3H), 
5.91(s, 1H), 6.67 (s, 1H), 6.78(d, J=0.35Hz. 2H). 13C 
NMR (125.8 MHz, CDCl3, ppm) δ21.53, 29.56, 34.67, 
56.14, 109.423, 127.92, 135.24, 142.01, 146.55.

Preparation of 3-(tert-butyl)-4-hydroxy-5-methoxy-
benzaldehyde (3): 3.00 g of compound 2 (15.5 mmol, 
1 equiv) were added to tert-butanol (35 mL), stirred 
at 0 °C, then liquid bromine (2.5 ml, 48.7 mmol, 3.14 
equiv) was added drop-wise, under nitrogen atmo-
sphere for 20 minutes, while keeping the solution 
pink. After the addition, the mixture was stirred at 
room temperature for 1h, quenched by 50 ml H2O and 

then partitioned with 50 ml ethyl acetate. The organic 
phase was dried over Na2SO4 and concentrated under 
reduced pressure. The crude products were purified 
with flash chromatography (petroleum ether: ethyl 
ether=13:1) to yield 3, a light, yellow solid (2.6 g, 
80%), 1H NMR (500MHz, CDCl3, ppm) δ 1.44 (s, 
9H), 3.97 (s, 3H), 6.64(s, 1H), 7.34 (d, J=1.65Hz, 1H), 
7.47(d, J=1.65Hz. 2H). 9.84 (s, 1H). 13C NMR (125.8 
MHz, CDCl3, ppm) δ29.14, 34.70, 56.33, 106.79, 
125.34, 128.30, 135.65, 147.25, 150.41, 191.52.

Preparation of 3-(tert-butyl)-4,5-dihydroxybenzalde-
hyde (4): 2.00 g of compound 3 (9.6 mmol, 1 equiv) 
were dissolved in CHCl3 (20 mL), and stirred at 0 °C. 
After, AlCl3 (1.79 g, 13.5 mmol, 1.4 equiv) was added 
in batches and then pyridine (3.4 mL, 42.3 mmol, 
4.4 equiv) was added drop-wise. The mixture was 
refluxed for 24 h, cooled down to 0 °C and washed 
with 10% HCl (60 mL x 3) until the aqueous phase 
became light blue. It was then was partitioned with 
150 ml ethyl acetate. The organic phase was dried over 
Na2SO4 and concentrated under reduced pressure. 
The crude products were purified with flash chroma-
tography (petroleum ether: ethyl ether=4:1) to yield 
4, a white powder (1.4 g, 75%), 1H NMR (500 MHz, 
acetone-d6, ppm) δ 1.46 (s, 9H), 7.31(d, J=1.8Hz, 
1H), 7.44 (d, J=1.8Hz, 1H), 9.78 (s, H). 13C NMR 
(125.8 MHz, acetone-d6, ppm) δ28.71, 34.44, 111.56, 
122.79, 128.48, 135.96, 144.99, 150.48, 190.80.

Preparation of BCA: 1.00 g of 3-(tert-butyl)-4,5-dihy-
droxybenzaldehyde (4) (5.2 mmol, 1 equiv) and mal-
onate (0.54 g) were dissolved in a mixture of benzene 
(5 ml), pyridine (0.6 ml, 5.2 mmol, 1 equiv) and piper-
idine (0.06 mL, 0.7 mmol, 0.13 equiv). The solution 
was stirred at refluxing temperature for 3.5 h, cooled 
to 25 °C, poured into the mixture of conc. HCl(aq) 
and ice water, and then was partitioned with ethyl 
acetate (20 ml). The organic phase was dried over 
Na2SO4 and concentrated under reduced pressure. 
The crude products were purified with flash chroma-
tography (petroleum ether: ethyl ether=3:2) to yield 5 
(BCA) (1.04 g, 85%), which was re-crystallized from 
methanol to afford needle-like light beige crystals, 1H 
NMR (500 MHz, acetone-d6, ppm) δ 1.45 (s, 9H), 
6.24 (d, J=15.85Hz,1H), 7.10(d, J=1.85Hz, 2H), 7.57 
(J=15.85Hz, 1H). 13C NMR (125.8 MHz, acetone-d6, 
ppm) δ28.86, 34.41, 111.39, 114.19, 120.16, 125.08, 
136.00, 144.79, 147.13, 147.00, 168.07.

HO
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HO

HO
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Scheme 1. Reagents and conditions: a) t-BuOH, 85% H3PO4, 90 °C, 7h, 71%; b) Br2, t-BuOH, rt, 1h, 80%; c) AlCl3, pyridine, 
CHCl3, 75%; d) piperidine, pyridine, 90 °C, 24 h, 85%.
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2.3. Deep frying analysis

Commercial soybean oil was purified by silica gel 
column chromatography to remove its endogenous 
antioxidants. Different 0.02% (w/w) antioxidants 
were added to soybean oil samples (500 g) separately 
and then the oil samples were heated to 180 °C. 
Fresh potato slices, about 2±0.5 mm thickness, were 
added at the rate of 20 g/h, fried for 8 minutes, then 
removed from the oils. Oil samples were tested every 
3 h during the frying period until 60 h. Acid values 
(AV) and Iodine values (IV) were determined for 
each sample using the International Union of Pure 
and Applied Chemistry (IUPAC) method (Paquot 
and Hautfenne, 1987).

The CD values were calculated from the 
absorbance and the final concentration of  the 
samples  (g/100 mL). The results were expressed 
as conjugated diene (CD) values and computed 
as  follows (Glende and Recknagel, 1994; Zuta 
et al., 2007):

= ∗CD
A
C

P

Where, A is absorbance of the sample at 233 nm.
C is final dilution concentration of the sample 
(g/100 mL).
P is the length of the measuring UV cell (cm).

2.4. Rancimat analysis

The antioxidant capacities of  BCA, TBHQ and 
caffeic acid were measured by the rancimat method 
(Metrohm, Shanghai, China) at different concen-
trations in oils. An air flow (20 L/h) was bubbled 
through the oil heated at different temperatures: 
80, 100 and 120 °C. The tests were carried out in 
duplicate. The protection factors (Pf) were calcu-
lated according to the following formula (Silva 
et al., 2001):

Pf =
IP
IP

x

0

Where, IPx = the induction period of the sample in 
the presence of antioxidant.
IP0= the induction period of the sample without 
antioxidant.

2.5. DPPH spectrophotometric assay

A 0.5 mL methanol solution of  different anti-
oxidant concentrations was added to a DPPH-
methanol solution (3.0 mL, 40 mg/L), and allowed 
to react for 30 min at 25 °C, then, absorbance at 
517 nm was recorded at different time intervals on 

a UV visible spectrophotometer. The DPPH con-
centration in the reaction medium was calculated 
from the calibrated curve. The radical scaveng-
ing activity (%) was calculated according to the 
following formula (Liu et al., 2014; Piang-Siong 
et al., 2017):

−
−

∗
Acontrol

Asample A
Scavenging activity (%) =1

( )
100%blank

A DPPH solution (3 mL) with methanol 
(0.5  mL) was used as negative control. A solu-
tion (3 mL) with methanol (0.5 mL) with a dif-
ferent concentration of  antioxidant was used 
as a  blank.  EC50 (i.e., efficient concentration of 
the substance that produces 50% scavenging), 
obtained  for the different antioxidants was cal-
culated by linear regression of  plots, where radi-
cal scavenging activity (%) was plotted against 
concentration.

3. RESULTS

3.1. Chemical structure of BCA

The 1H and 13C chemical shifts of  com-
pound  BCA agree well with its chemical struc-
ture,  which is compared with the spectra data 
for  caffeic acid reported in the literature (Jeong 
et al., 2011).

The single-crystal structure analysis of  BCA 
was performed using X-ray diffraction. The crys-
tal data of  BCA presented (Figure 1; Table 1) give 
the perspective views of  this compound together 
with its atomic labelling system. Thus, it can be 
confirmed for the absolute configuration of  BCA 
((E)-3-(3-(tert-butyl)-4,5-dihydroxyphenyl)
acrylic acid).

3.2. Antioxidant capacity in deep frying oil

During the oxidation of  lipids containing meth-
ylene substituted dienes and polyenes, a shift in 
the position of  the double bond was observed, due 
to isomerization and conjugated bond formation 
(conjugated dienes). The percentage changes of 
CD during frying (Figure 2, A), were as follows: 
BCA>Caffeic acid>TBHQ>Blank.

No obvious change was observed during the 
 initial 12 hours (Figure 2, B). But, later, the change 
in AV manifested the capacity of  antioxidants as 
follows: CBA>Caffeic acid>TBHQ>Blank.

When soybean oils were in deep frying at 180 °C, 
some polyunsaturated fatty acids became conju-
gated, and some double bonds were destroyed, 
thus, decreasing iodine values. IV changes at 180 °C 
(Figure 2, C) increased as follows: BCA>Caffeic 
acid>TBHQ>Blank.
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3.3. Antioxidant capacity using the rancimat method

According to their Pf values (Figure 3), 
TBHQ, Caffeic acid and BCA showed good anti-
oxidant capacities in the concentration 0.02% at 
80, 100, and 120 °C, as follows: BCA>Caffeic 
acid>TBHQ>Blank.

In different concentrations, 0.01, 0.02, and 0.04% 
at 100 °C (Figure 4), Pf values changed as follows: 
BCA>Caffeic acid>TBHQ>Blank. BCA, however, 
showed a remarkable Pf value (i.e., 79.9) at a con-
centration of 0.04% at 100 °C.

3.4. Antioxidant capacity using DPPH 
spectrophotometric assay

The scavenging DPPH radical is widely used 
to evaluate antioxidant capacity due to its simple, 
rapid, sensitive and reproducible procedure. In this 
study, kinetic investigation was performed to esti-
mate the speed of DPPH–Antioxidant reaction. 
On the other hand, EC50 of TBHQ, caffeic acid and 
BCA were measured in terms of hydrogen-donating 
or radical-scavenging capacity.

The EC50 values for the reducing power of 
TBHQ, Caffeic acid and BCA were 0.1690, 0.1283, 
and 0.1748 μg/L, respectively. The reducing power 
decreased as follows:

TBHQ≈BCA>Caffeic acid. The ease of donat-
ing hydrogen (Figures 5, A and B) was Caffeic 
acid>TBHQ≈BCA.

4. DISCUSSION

4.1. Antioxidant capacity of BCA in deep frying oils 
and rancimat test

In the deep frying oil and rancimat tests, BCA 
showed stronger antioxidant capacity than TBHQ 
and caffeic acid (Scheme 2):

1. The influence of the tert-butyl group: Increased 
the grease compatibility and the leaving out of 
ortho-hydrogens on BCA (Huang et al., 2014), 
at 180 °C.

2. The influence of  the acrylic acid group: 
Enlarged the conjugation system, which pro-
vided more stabilized radical resonance to cap-
ture more peroxyl radicals. It also benefited 
the intermolecular coupling of  BCA to  form 
a  large relative molecular mass (Figure  1), 
with  a higher boiling point than TBHQ. 

Figure 1. Crystal structure diagram of BCA by X-ray diffraction.
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Table 1. Crystal Data and Structure Refinement for BCA

Empirical formula C13H16O4

formula weight 236.26

temperature (K) 296(2)

crystal system triclinic

space group P-1

a (Å) 6.037(3)

b (Å) 6.357(3)

c (Å) 16.711(9)

v (Å) 618.7(6)

z 2

ρcalcd(mg/m3) 1.268

μ (Mo/Ka)(mm-1) 0.094

F(000) 252

crystal size (cm3) 0.23x0.20x0.20

reflections collected/unique 3216 / 2157

Rint 0.0118

data/restraints/parameters 2157/0/161

goodness-of-fit on F2 1.050

R1, wR2[I>2σ(I)] 0.0394, 0.1033

R1, wR2(all data) 0.0498, 0.1149
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Hence, BCA lasted longer in deep frying oil 
compared to TBHQ.

3. The influence of the catechol group: Hydrogen 
bonds in catechol group made the interme-
diate  more stable after one of the phenolic 
hydroxyl hydrogen atoms left (Baum and Perun, 
1962). Meanwhile, some metallic ions were more 
easily chelated than TBHQ, also by the catechol 
group of BCA (Cornard and Lapouge, 2006).

4.2. DPPH radical scavenging activity

In the DPPH system, BCA showed approximate 
antioxidant capacity with TBHQ, and lower capac-
ity compared to caffeic acid:

EC50 values. The steric effect of the tert-butyl group 
hinders free radical DPPH from occupying carbon 
positions on the benzene ring of BCA. As a result, the 

Figure 2. Conjugated diene values (CD), Acid values (AV) and Iodine values (IV) of antioxidants during deep frying in soybean 
oil (average value ± standard deviation, n=2).
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Figure 3. Pf values at concentration 0.02% at 80, 100, and 120 °C. (average value ± standard deviation, n=2). Reported data show 
standard deviation below 5%. Statistical significance has p values always below 0.05.
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Figure 4. Pf values at different concentrations in lard, at 
100 °C. (average value ± standard deviation, n=2). Reported 

data show standard deviation below 5%. Statistical significance 
has p values always below 0.05.
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free radical scavenging activity of BCA is less than caf-
feic acid and TBHQ in the DPPH system. However, 
the synergistic effect of the catechol group benefited 
the leaving out of hydrogen atoms, and the large con-
jugated system of the acrylic acid group enabled the 
stabilized radical resonance to capture more DPPH 
radicals, thus, making the free radical scavenging activ-
ity of BCA similar to TBHQ in the DPPH solution.

Kinetic behavior. The steric effect of the tert-butyl 
group on the BCA caused the second phenol hydro-
gen in the ortho-tert-butyl group to remain after the 
first one left. The same response was observed for 
the oxidation of compound 3 to compound 4 with-
out protecting the phenol hydrogen.

5. CONCLUSIONS

The specific structure of  BCA was confirmed 
by  X-ray single crystal diffraction, 1H, and 13C 
NMR. It had a higher lipophilicity than caffeic 
acid, and showed superior antioxidant capac-
ity to  caffeic acid and TBHQ in deep frying 
and  Rancimat tests, but an almost equal capac-
ity to TBHQ in the DPPH method, suggesting 
its  potential use as  an antioxidant in lipophilic 
conditions. Moreover, the incorporation of  the 
tert-butyl group into the caffeic acid molecule 
may render additional health benefits or possible 
synergistic effects in vivo, which will be further 
investigated.
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Figure 5. Kinetic behavior of TBHQ, caffeic acid and BCA at EC50 concentrations in DPPH.

Scheme 2. Elucidation of the synergistic effects of ortho-hydroxy groups on BCA.
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