
GRASAS Y ACEITES 72 (1)
January-March 2021, e398

ISSN-L: 0017-3495
https://doi.org/10.3989/gya.0103201

Catalyst-free production of fatty acid ethyl esters (FAEE)
from macauba pulp oil

iD C. Silvaa,c✉, iD T.A.S. Colonellib, iD C.P. Trentinic, iD N. Postauec,
iD D.A. Zempulskic, iD L. Cardozo-Filhoc and iD E.A. Silvab

aDepartamento de Tecnologia, Universidade Estadual de Maringá (UEM), Av. Angelo Moreira da Fonseca 180, Umuarama, PR,
87506-370, Brazil.

bCentro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná (UNIOESTE), Faculdade Street 645, Jardim La
Salle, Toledo, PR, 85903-000, Brazil.

cDepartmento de Engenharia Química, Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringa, PR, 87020-900, Brazil.

✉Corresponding author: camiladasilva.eq@gmail.com

Acrocomia aculeate; Catalyst-free; Continuous; Ethanol

Producción sin catalizador de ésteres etílicos de ácidos grasos (FAEE) a partir de aceite de pulpa de macauba. En este
estudio, se investigó la producción de ésteres etílicos de ácidos grasos (FAEE) a partir de aceite de pulpa de macauba y etanol
presurizado. Los experimentos se realizaron, sin la adición de catalizador, a 20 MPa, para determinar el efecto de la temperatura (200 a
300 °C) y la relación de masa de aceite a etanol (1:1 y 1:2) en el contenido de FAEE, aplicando diferentes tiempos de residencia (10 a
45 min). También se evaluó el efecto de la adición de n-hexano al aceite (20% en peso) como co-disolvente. El uso de altas temperaturas
(275 y 300 °C) dio como resultado un alto contenido de FAEE (∼90%). El aumento de la cantidad de etanol en el medio de reacción
contribuyó a la formación de ésteres solo a temperaturas de funcionamiento de 200 a 250 °C. También se observó que con la adición de
co-disolvente (en el aceite) era posible obtener altas cantidades de FAEE en un tiempo de reacción más corto. Además, se observó un bajo
contenido de compuestos sin reaccionar (∼8,0%) y la conversión de ∼90 y 99% de ácidos grasos libres y triglicéridos, respectivamente.
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SUMMARY: In this study, the production of fatty acid ethyl esters (FAEE) from macauba pulp oil and pressurized ethanol was 
investigated. The experiments were conducted without the addition of catalyst, at 20 MPa, to determine the effect of temperature (200 to 
300 °C) and the oil to ethanol mass ratio (1:1 and 1:2) on the FAEE content and different residence times (10 to 45 min). The effect of the 
addition of n-hexane to the oil (20 wt%) as a co-solvent was also evaluated. The use of high temperatures (275 and 300 °C) resulted in
high FAEE content (∼90%). Increasing the amount of ethanol in the reaction medium contributed to the formation of esters only at 
operating temperatures of 200 to 250 °C. It was also observed that with the addition of co-solvent (in the oil) it was possible to obtain
high amounts of FAEE in a shorter reaction time. In addition, a low content of unreacted compounds (∼8.0%) and the conversion of ∼90 
and 99% of the free fatty acids and triglycerides were observed, respectively.
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1. INTRODUCTION

Macauba (Acrocomia aculeata) is a promising
oleaginous plant for the production of biodiesel,
mainly due to its high oil content, with 23-46% in
the pulp (Evaristo et al., 2016; Lescano et al.,
2015) and 43-64% in the kernel (Evaristo et al.,
2016; Nunes et al., 2018). Several reports indicate
that the oil extracted from the pulp of macauba
presents a high content in free fatty acids (FFA),
as observed by Dona et al., (2013) and Visioli et
al., (2018), who reported 79.24 and 65.20% of
free fatty acids (FFA) in macauba pulp oil,
respectively. The oil is often obtained by pressing
and filtration without the need for refining steps
(Colonelli et al., 2017). Thus, the conventional
method involving the use of homogeneous
alkaline catalysts is not applicable for the
transformation of this oil into biodiesel, since the
presence of FFA neutralizes the catalyst and also
produces soap emulsions, which hinders the
separation of glycerol (Patil and Deng, 2009).

Thus, other strategies need to be adopted for
the synthesis of biodiesel using low quality raw
materials, particularly when high concentrations
of free fatty acids are present (Mardhiah et al.,
2017). Reactions using alcohol under pressurized
conditions have been widely investigated for
biodiesel production (Visioli et al., 2016; Santos
et al., 2017; Trentini et al., 2018). These are
associated with the same energy cost as reactions
conducted at low pressures using a basic
homogeneous catalyst and generate a product with
higher purity (Demirbas, 2002), eliminating the
need for separation from the catalyst. In this
method, high yields of esters are obtained without
the use of catalysts in a relatively short time (Nan
et al., 2015) since, under conditions of high
temperature and pressure, the miscibility of the
triglycerides with the alcohol increases due to the
decreasing polarity of the alcohol (Farobie and
Matsumura, 2017; Kusdiana and Saka, 2004; Liu
et al., 2018; Osmieri et al., 2017), which also
behaves as an acid catalyst in the reaction besides
being a solvent (Kusdiana and Saka, 2004).
Another advantage to this method is the efficiency
and good results which have been reported for
reactions where the oil had a high content in free
fatty acids (Postaue et al., 2019; Trentini et al.,
2018; Visioli et al., 2018). Thus, this appears to
be a viable alternative for studies on macauba
pulp oil.
 

The efficiency of the reaction under pressurized
conditions is dependent on the adjustment of the
operating variables (pressure, temperature and
time), the nature of the raw material (oil and
alcohol), the oil-to-alcohol ratio used and the
additives added to the reaction medium. The
reaction is commonly conducted at pressures in
the order of 20 MPa at temperatures between 275
and 350 °C (Silva and Oliveira, 2014).

The amount of alcohol used in the process is
higher than that of the stoichiometric oil-to-
alcohol molar ratio of 1:3, since an excess of
alcohol will favor the formation of the esters,
shifting the reaction toward the formation of
products (Colonelli et al., 2017). This is because
there is an increase in the miscibility and the area
of contact between the substrates, which benefits
the production of esters (Musa, 2016). Some
authors have reported that the use of an oil-to-
alcohol molar ratio of 1:40 (which equates to a
mass ratio of ∼1:2) gives the highest ester yield
(Silva et al., 2007; Trentini et al., 2018).
However, other authors have found that the
formation of esters was favored up to an oil-to-
alcohol molar ratio of 1:20 (mass ratio of ∼1:1)
(Colonelli et al., 2017; Silva et al., 2010; Trentin
et al., 2011).

Another aspect to be considered is the addition
of a co-solvent to the reaction medium, which can
act to improve the operating conditions of the
technology using alcohol under sub- and
supercritical conditions. This generally involves
the reduction of some adjustable parameters of the
reaction, such as temperature, pressure, residence
time and/or oil-to-alcohol ratio (Akkarawat-
khoosith et al., 2019c, 2019a; Osmieri et al.,
2017; Tobar and Núñez, 2018). In addition, the
miscibility and solubility of the reaction mixture
are also improved (Akkarawatkhoosith et al.,
2019a, 2019b; Đokić-Stojanović1 et al., 2019;
Muppaneni et al., 2013), ensuring a high
production of esters in a short period of time and
without the use of a catalyst (Lim and Lee, 2013).
Several co-solvents are cited in the literature.
Notably, the use of n-hexane has proved to be
efficient for reactions under supercritical
conditions without the use of a catalyst (Abdala et
al., 2014a; Colonelli et al., 2017; Lim and Lee,
2013; Muppaneni et al., 2013; Silva and Oliveira,
2014), besides reducing the viscosity of the
reaction mixture and allowing the production in a
continuous process (Sawangkeaw et al., 2011).
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Recently, obtaining oil esters from macauba
pulp in a catalyst-free medium using pressurized
ethanol was reported by Colonelli et al., (2017).
These authors found that the addition of a co-
solvent (n-hexane) and the use of higher amounts
of alcohol in the reaction medium were the
variables that had the greatest influence on the
formation of esters. However, the effects of these
variables were observed in a fixed residence time.

In this context, the objective of this study was
to evaluate the kinetics of ester production from
macauba pulp oil (MPO) using ethanol under
pressurized conditions and without the use of a
catalyst. Experiments were carried out at different
temperatures (200 ºC to 300 ºC) and the influence
of adding a greater amount of ethanol to the
reaction medium was evaluated. The effect of the
addition of a co-solvent (n-hexane) and the ester
yield at different residence times were also
investigated.

2. MATERIALS AND METHODS

2.1. Materials

Macauba pulp oil (Cocal - Brasil), ethanol (JT
Baker 99.8%) and n-hexane (Vetec 98.5%) were
used for the reaction. The fatty acid composition
of macauba pulp oil used in this study was
previously reported (Colonelli et al., 2017), with
the oil presenting predominance of oleic (70%)
and palmitic acids (13%). The oil has FFA content
of 70.26 ± 0.05 wt% and water content of 0.76 ±
0.001 wt%. For analysis of the reaction products,
standard analytical methyl heptadecanoate (Sigma
Aldrich, 99.9%) and heptane (F Maia, 95%) were
used.

2.2. Reaction procedure

In order to carry out the reaction between
macauba pulp oil and ethanol, the mixture of
these substrates was fed by a high-pressure liquid
pump in a reactor operated in continuous mode.
For reactions with n-hexane, the co-solvent was
added directly into the reaction mixture before
pumping. The reactor was at the test temperature
and after filling the system, it was pressurized.
The residence time was calculated by the ratio
between the reactor volume and the feed rate of
the reaction mixture. Before collection, the
reaction mixture was cooled to 15 °C by a
thermostatic bath. The apparatus and experimental

procedure is described in greater detail by Mello
et al., (2017) and Visioli et al., (2016) and the
experiment for each experimental condition was
performed at least in duplicate.

Samples were collected after the residence time
for each reaction had been reached, and the excess
ethanol was removed at 80 °C. To remove the
glycerol formed the procedure described by
Trentini et al., (2018) was used.

2.3. Analytical methods

To determine ester content, the samples were
diluted in heptane and the internal standard
(methyl heptadecanoate) was added and then the
samples were injected, in triplicate, in the gas
chromatograph (Agilent GC 7890), equipped with
flame ionization detector and capillary column
(ZB-WAX, 30 m x 0.25 mm x 0.1 µm), using the
chromatographic conditions reported by Colonelli
et al., (2017). The quantification of the ester
content in the samples followed the standard
UNE-EN 14103 method (2003), using Equation 1
to calculate the ethyl ester content:

where ΣA is the sum of the peak areas
corresponding to the esters, AP is the area for the
methyl heptadecanoate, CP and CA are the
concentrations of the methyl heptadecanoate and
injected sample, respectively.

In order to determine the contents in mono-, di-
and triglycerides, 100 mg of sample were
derivatized with MSTFA (15 min at room
temperature) (Standard UNE-EN 14105, 2003)
and then to a concentration of 3 mg·mL-1. The
diluted sample (2 µL) was analyzed with a gas
chromatograph (Shimadzu, GC-2010 Plus)
equipped with a capillary column (Zebron
ZB-5HT, 10 m × 0.32 mm × 0.10 µm), flame
ionization detector and on-column injector. The
information concerning oven temperature
gradient, detector temperature and the heating
program for the injector were presented by
Trentini et al., (2019). Calibration curves were
constructed using chromatographic standards of
triolein, diolein and monolein for the
quantification of the compounds. FFA content was
determined from the acid-base titration method as
recommended by AOCS Ca 5a-40 (American Oil
Chemists’ Society, 1990).

Esters content (%)= ΣAAP CPCA   ×  100 (1)
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3. RESULTS AND DISCUSSION

3.1. Ethyl ester content

Figure 1 shows the results from the
experiments conducted with a mass ratio of MPO-
to-ethanol of 1:1, as well as the effect of
increasing the ratio to 1:2 and adding 20 wt% of
co-solvent (n-hexane) at a ratio of 1:1, at
temperatures of 200 to 300 °C. The mass ratios of
MPO-to-ethanol of 1:1 and 1:2 are equivalent to
molar ratios of triglycerides-to-ethanol of ∼40
and 122 and of free fatty acids-to-ethanol of 9 and
18, respectively.

3.1.1. Effect of temperature

In the overall analysis of the data shown in
Figure 1 it can be seen that an increase in
temperature led to higher ester yields. When the
temperature was increased from 200 to 250 °C
and from 250 to 300 °C, with a residence time of
10 min, it was possible to obtain an increase in the
ester content in the ratios of ∼2.35 and ∼1.15,
respectively, for the three reaction media
evaluated. The temperature effect is significant
(p < 0.05) up to the residence time of 45 min
(analysis not shown in Figure 1).

In reactions at high temperatures, changes in
the solubility, density, dielectric constant and
solvation of the mixture in the reaction medium
occur (Farobie and Matsumura, 2017). This favors
a reduction in the mass transfer limitations and
increases the reaction rate (Abbaszaadeh et al.,
2012; Pinnarat and Savage, 2010). In addition,
near the critical temperature, the polarity of the
alcohol decreases, and the alcohol starts to solvate
the non-polar triglycerides, forming a practically
homogeneous mixture (Srivastava, Paul, and
Goud, 2018), which allows higher ester yields to
be obtained.

Tobar and Núñez (2018) showed that the
reaction kinetics are affected by increasing
temperature due to an increase in the kinetic
energy of the particles and the relative probability
of collisions between them.

In a study conducted by Silva et al., (2014),
increased ester yields were observed on increasing
the temperature from 250 to 300 °C, with a
difference of ∼42% in only 10 min of reaction. A
similar result was reported by Santos et al., (2018)
with a 30% increase in the ester yield for the same
temperature range. In addition, Zhou et al., (2017)
and Akkarawatkhoosith et al., (2019a) obtained

an increased ester content of ∼60% on increasing
the operating temperature from 250 to 300 ºC.

Under the conditions where ethanol was below
its critical temperature (243.2 °C), the results
demonstrated an FAEE content of 30 to 60%. This
is due to the high concentration of FFA in the
macauba oil used (70.26%), resulting in the
esterification reaction predominating, since FFAs
are more reactive than triglycerides (Go et al.,
2014; Vieitez et al., 2012).

Pinnarat and Savage (2010) studied non-
catalytic esterification and reported that an ester
content of 70% was obtained at 230 °C with a
residence time of 80 min and pressure of 5.2 MPa.
Go et al., (2014) reported an ester yield of ∼60%
with the reaction conducted at 200 °C for 30 min
at a pressure of 2.8 MPa. At the same temperature
but with a pressure of 20 MPa, Abdala et al.,
(2014b) achieved ∼70% conversion of oleic acids
to esters in only 10 min of reaction. Santos et al.,
(2017) obtained an esters content of ∼75% at
220 °C and 10 MPa with 80 min of reaction. Jesus
et al., (2018) observed that the reaction between
oleic acid and ethanol yielded ∼66% esters at
200 °C with a reaction time of 30 min and
pressure of 15 MPa.

3.1.2. Effect of oil to ethanol mass ratio

Increasing the MPO-to-ethanol mass ratio from
1:1 to 1:2 had a more pronounced effect on the
formation of esters for the reactions conducted at
temperatures of 200 to 250 ºC, particularly at the
shortest times evaluated (10 and 15 min). At the
highest temperatures considered, that is 275 ºC
(Figure 1d) and 300 ºC (Figure 1e), the increase in
the amount of alcohol in the reaction medium did
not influence the FAEE content.

A greater amount of alcohol in the reaction
boosts the formation of the products, since
increasing the volume of ethanol available in the
medium results in a decrease in the critical
temperature of the reaction mixture (Osmieri et
al., 2017), promoting the occurrence of the
reaction occurring in a homogeneous phase region
and increasing the reaction kinetics. MPO is
mainly composed of FFA and esterification
predominates in the reaction medium. As reported
by Santos et al., (2017), this reaction occurs in a
single homogeneous phase at 10 MPa with an
FFA-to-ethanol molar ratio of 1:1 to 30:1 from
220 to 280 °C.

The alcohol concentration has little effect at
higher operating temperatures, as observed at 275
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FIGURE 1. Ethyl ester contents of macauba pulp oil obtained at different temperatures: (a) 200 °C, (b) 225 °C, (c) 250 °C, (c) 275 °C and
(e) 300 °C at 20 MPa, MPO-to-ethanol mass ratio of 1:1 (  ) and 1:2 (  ), and MPO-to-ethanol mass ratio of 1:1 with 20 wt% of co-
solvent (in oil) (  ). The values in the graphs represent the means of two determinations, with SD < 2.0%. Means followed by the same
lowercase letters (with the same residence time) did not differ statistically (p > 0.05) using ANOVA (Tukey’s test).
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and 300 °C (Figure 1), this effect occurs due to
the increase in the critical pressure in the mixture,
which makes it necessary to use high pressure to
obtain a homogeneous phase, as noted by Nan et
al., (2015) who obtained similar ester yields at
310 °C, after 30 min at 14 MPa, using microalgae
oil-to-ethanol molar ratios of 1:26 and 1:42. The
experiments conducted by Bezerra et al., (2018)
also provided similar conversion to ethyl esters
for oil:ethanol molar ratios of 1:20 and 1:40 at
350 °C, after 40 min at 20 MPa. A similar result
was obtained by Costa et al., (2019) on raising the
oil:methanol molar ratio from 1:21 to 1:41, at
300 °C, for 10 min of reaction at 20 MPa.

At lower temperatures (200 to 250 ºC) the
effect of the ratio between the lipids (triglycerides
or FFA) and the alcohol in the matrix can be noted
(Figure 1). Mello et al., (2017) reported a 12%
increase in the ethyl ester yield on increasing the
ratio of alcohol to crambe oil hydrolyzate from
12:1 to 15:1 (molar basis) in a reaction conducted
at 275 °C, for 10 min at 15 MPa. Jesus et al.,
(2018) conducted the reaction at 250 °C and
15 MPa and found that on increasing the
ethanol:oleic acid molar ratio from 1:1 to 6:1 the
conversion of FFA to esters increased by 22%.

3.1.3. Effect of co-solvent

The addition of 20 wt% of co-solvent to the
reaction mixture (with an oil-to- ethanol mass
ratio of 1:1) promoted an improvement in ester
production. Thus, for a residence time of 10 min it
was possible to obtain increases of 30 to 36% and
75 to 87% in the ester content at 200 and 300 ºC,
respectively. The use of a co-solvent improves the
mutual solubility between the alcohol and the oil
(Tobar and Núñez, 2018), allowing for the
presence of a homogeneous phase (Osmieri et al.,
2017), increasing the reaction rate and making it
possible to obtain high ester yields at moderate
temperatures (Maçaira et al., 2014).

Zhou et al., (2017) performed a coupled
extraction and reaction process. When the
reaction was conducted at 340 °C, for 120 min,
with an n-hexane flow of 0.2 mL·min-1, there was
an increase of 63% in ester yield compared to the
reaction without the addition of the co-solvent. In
research conducted by Tobar and Núñez (2018),
the highest yield of ethyl esters (68%) was
obtained with the addition of CO2 (0.001 g CO2

per g of ethanol) as a co-solvent at 300 °C and

20 MPa. Akkarawatkhoosith et al., (2019c)
reported that an iso-propanol:oil weight ratio of
0.1:1 for only 3 min at 350 °C gave a 37%
increase in the ester yield. The same research
group (Akkarawatkhoosith et al., 2019b) also
found that in the reaction conducted at 300 °C for
4 min the addition of a co-solvent (55 wt% ethyl
acetate) promoted an increase in the ethyl ester
production of ∼68% compared to the reaction
with no co-solvent added.

It should be noted that adding more alcohol to
the process would significantly increase the
production costs, as the ethanol (99.5%) used for
this purpose is ∼21% more expensive than
n-hexane (95%), according to the company Tedia
Brazil®. Thus, the costs related to increasing the
oil-to-ethanol mass ratio to 1:2 would be ∼85%
higher than using the mass ratio of 1:1 with
20 wt% of n-hexane (basis of calculation: 1 L of
reaction mixture). However, it needs to be
considered that high ester content (∼89%) can be
obtained in a relatively short time (15 min) at
300 °C, further enhancing the benefits of using
the co-solvent. In addition, as noted by
Sawangkeaw et al., (2011), n-hexane, the solvent
most commonly used in the extraction of
vegetable oils, can be removed after the oil
extraction and employed in the production of
biodiesel.

3.2. Triglyceride, diglyceride and monoglyceride
        contents

In the samples obtained at 300 ºC, the
triglyceride (TG), diglyceride (TG),
monoglyceride (MG) and free fatty acid (FFA)
contents were determined, as shown in Figure 2,
considering that the highest levels of FAEE were
obtained at this temperature. The contents in these
compounds in the MPO were also determined at:
18.42 ± 0.15 wt%, 15.2 ± 0.62 wt%, 3.85 ±
0.12 wt% and 70.26 ± 0.05 wt% of TG, DG, MG
and FFA, respectively. In general, the increase in
mass ratio and addition of co-solvent did not
influence the conversion of TG or the formation
of DG. The reaction conducted with a mass ratio
of MPO-to-ethanol of 1:1, showed a higher
concentration of MG when compared to the
others. It can also be seen that there was a higher
consumption of FFA for the reaction with a mass
ratio MPO-to-ethanol of 1:2.

For all conditions evaluated, high TG
conversions were achieved, with contents in these
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compounds in the samples obtained being below
0.14 wt%. In other studies on the
transesterification reaction under pressurized
conditions conducted at the same temperature, the
TG contents of 0.2 to 22 wt% (Santos et al., 2018;
Trentin et al., 2011; Trentini et al., 2019; Vieitez
et al., 2010) were detected under the conditions
that provided maximum ester yields.

The remaining FFA contents in the samples
ranged from 4.0 to 6.6 wt%, which correspond to
an FFA conversion of above 90%. A similar result
was obtained by Visioli et al., (2016) for
conversion under the thermodynamic equilibrium
in the esterification reaction of soybean oil
deodorizer distillate with pressurized ethanol.
Vieitez et al., (2012) performed the supercritical
alcoholysis of raw materials with 0 to 100 wt% of

FFA and achieved a maximum conversion of FFA
to ethyl esters of ∼ 90%.

The total amount of unreacted compounds
detected was less than 8.0 wt%. Soto et al., (2014)
found DG, MG and FFA contents of 11, 3 and
2%, respectively, in the reaction between
sunflower oil and methanol with 40 min of
reaction at 18 MPa. Ortiz-Martínez et al., (2016)
reported a higher value of unreacted compounds,
with ∼18 and 27% of MG and DG, respectively,
for the reaction between Pongamia pinnata oil
and methanol, with a reaction time of 20 min at
18 MPa. Low contents in MG (2%), DG (4%) and
TG (0.2%) were reported by Trentini et al., (2019)
for the reaction between grease trap waste lipids
and ethanol, with the addition of 2.5 wt% water,
with a residence time of 30 min at 20 MPa.

FIGURE 2. Triglyceride (  ), diglyceride (  ), monoglyceride (  ), free fatty acids (  ) and total contents obtained (  ) at 300 ºC:
MPO-to-ethanol mass ratio of (a) 1:1 and (b) 1:2, and (c) MPO-to-ethanol mass ratio of 1:1 with 20 wt% of co-solvent (in oil). The values
in the graphs represent the means of two determinations, with SD < 1.0 wt%. Means followed by the same lowercase letters (for the same
compound) did not differ statistically (p > 0.05) using ANOVA (Tukey’s test).
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4. CONCLUSIONS

Increasing the operating temperature up to
300 °C for the reaction between macauba pulp oil
(MPO) and ethanol led to high ester contents.
Moreover, it was found that the reactions
conducted at high temperatures (275 and 300 °C)
required less alcohol in the reaction medium in
shorter residence times, demonstrating that
temperature is a key factor to be considered in
studies on the production of esters. The addition
of n-hexane to the reaction, which increased the
diglyceride and monoglyceride contents by only
0.6 wt%, allowed for a reduction in the reaction
time of ∼44% and increased the ester production
by up to ∼25%. The reaction in a pressurized
medium without catalyst was effective, and
produced low contents in unreacted compounds
(∼ 8.0%) and high consumption of triglycerides
(∼ 99%) and free fatty acids (∼90%). The highest
FAEE content (∼90%) was obtained with an
MPO-to-ethanol mass ratio of 1:1 with 20 wt% of
co-solvent (in the oil) at 300 °C after 15 min of
reaction.
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