
Chemometrics: From Classical to Genetic Algorithms

By Riccardo Leardi

Department of Pharmaceutical and Food Chemistry and Technology, University of Genova,
via Brigata Salerno (ponte), I-16147 Genova, Italy. E-mail: riclea@dictfa.unige.it

CONTENTS

1. Introduction
2. Data collection
3. Data display
4. Classification
5. Modelling
6. Calibration
7. Feature selection
8. Genetic algorithms
9. Artificial neural networks
   References
   Complementary bibliography suggested
   Web sites

RESUMEN

Quimiometria: De los algoritmos clásicos a los genéticos.

En este artículo se muestran los aspectos fundamentales de
la Quimiometria por medio de una revisión rápida de las técnicas
más relevantes para mostrar los datos, modelar y calibrar. Se des-
criben dos técnicas emergentes como los algoritmos genéticos y
las redes neuronales. El objetivo del articulo es que la comunidad
cientifica tome conciencia de la gran superioridad del análisis
multivariante sobre el análisis univariante. No se describen los de-
talles matemáticos y algorítmicos porque el articulo está dirigido a
problemas genéricos en los que la Quimiometría puede ser apli-
cada con éxito dentro del campo de la Química Analítica.

PALABRAS-CLAVE: Análisis multivariante - Calibración – Cla-
sificación – Modelos – Presentación de datos - Quimiometría.

SUMMARY

Chemometrics: From classical to genetic algorithms.

In this paper the fundamentals of Chemometrics are
presented, by means of a quick overview of the most relevant
techniques for data display, classification, modeling and
calibration. Two emerging techniques such as Genetic Algorithms
and Artificial Neural Networks will also be presented. Goal of the
paper is to make people aware of the great superiority of
multivariate analysis over the commonly used univariate
approach. Mathematical and algorithmical details are not
presented, since the paper is mainly focused on the general
problems to which Chemometrics can be successfully applied in
the field of Food Chemistry.

KEY-WORDS: Calibration - Chemometrics - Classification – Data
display – Modeling – Multivariate analysis.

1. INTRODUCTION

I am well aware that many of the readers of this
book are not familiar with chemometrics, and that a
relevant percentage among them have never even
heard about this “new” science (it is quite funny that

it is still considered as a “new” science, when the
Chemometrics Society has been funded 30 years
ago and the most basic algorithms date back to the
beginning of the century … ). I also know very well
that some among the readers are quite frightened by
everything involving mathematical computations
higher than a square root or statistical tests more
complex than a t test.

Therefore, the goal I set for myself in writing this
contribution is simply that of being read and
understood by the majority of the readers of this
Journal; I will be completely satisfied if some of them,
after having read it, would say: “Chemometrics is
easy and powerful indeed, and from now on I will
always think in multivariate way”.

Of course, to accomplish this goal in the reduced
space of a chapter I must try to highlight the
attractive sides of chemometrics, without giving too
much relevance to the algorithms. Therefore, except
for Principal Component Analysis, that is the basis of
multivariate techniques, I will always try to show the
intuitive aspects of each technique.

The reader interested in a deeper knowledge of
chemometrics will find at the end of this chapter a
short list of books and web sites that can be used as
textbooks.

First of all, what is Chemometrics? According to the
definition of the Chemometrics Society, it is “the
chemical discipline that uses mathematical and
statistical methods to design or select optimal
procedures and experiments, and to provide maximum
chemical information by analyzing chemical data”.

One of the major mistakes people do about
chemometrics is thinking that to use it one has to be
a very good mathematician and to know the
mathematical details of the algorithms he is using.
From the definition itself, it is clear instead that a
chemometrician is a chemist (the word “chemical”
appears three times) who can use mathematical and
statistical methods.

If we want to draw a parallel with everyday life,
how many among us do really know in detail how do
a TV set, a telephone, a car or a washing machine
work? Anyway, everybody watches TV programs,
makes phone calls, drives a car and starts a washing
machine. Of course, what is important is that people
know what each instrument is made for and that
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nobody tries to watch inside a telephone, or to drive
a TV set, or to speak inside a washing machine or to
do the laundry in a car…

People can deal with chemometrics at different
levels, according to their knowledge and to the time
they want to (or can) give to chemometrics. Roughly
speaking, I can divide them into four levels (from the
highest to the lowest):

level 1: full-time chemometricians developing new
algorithms;

level 2: full-time chemometricians applying
chemometrics to problems of other people;

level 3: part-time chemometricians able to solve
their simplest problems by applying basic
chemometrics and giving their most complex problems
to level 2 chemometricians for being solved;

level 4: people who, though not knowing how to
use chemometrics, are anyway well aware of its
potential and give their problems to level 2 or level 3
chemometricians for being solved.

Of course, the required knowledge of the
algorithms decreases when going down to the scale:
while at level 1 a detailed knowledge and high
mathematical skills are required, at levels 2 and 3 it is
important to know the principles on which the
techniques are based, in such a way that they can be
applied in an appropriate way; at level 4 what one
has to know is that chemometrics and
chemometricians do exist and that they can solve a
lot of problems …

It has also to be considered that the great majority
of the real problems can be solved by applying one of
the basic techniques, whose understanding, at least
from an intuitive point of view, is relatively easy and
does not require high-level mathematical skills.

2. DATA COLLECTION

Chemometrics works on data matrices. This
means that on each sample a certain number of
variables have been measured (in the
“chemometrical jargon” we say that each object is
described by p variables). Although some techniques
can allow to deal with a limited amount of missing
values, a chemometrical data set must be thought of
as a spreadsheet in which all the cells are full:

var. 1 var. 2 var. 3 var. 4 var. 5 var. 6 var. 7 ... var. p

obj. 1

obj. 2

obj. 3

obj. 4

obj. 5

obj. 6

.......

obj. n

Sometimes, instead, if data are gathered without
having any specific project, it happens that the result
is a “sparse” matrix, in which not all the cells contain
a value. In that case, if the percentage of missing
data is quite high, the whole data set is not suitable
for a multivariate analysis; as a consequence, the
variables and/or the objects with the lowest number
of data must be removed, and therefore a huge
amount of experimental effort can be lost.

All the chemometrical software allows the import
of data from ASCII files or from spreadsheets. It is
therefore suggested to organise the data from the
beginning in matrix form, in such a way that the
import can be performed in a single step. If, on the
contrary, the data are spread in several files or
sheets (e.g., one file for each sample or for each
variable), then the import procedure would be much
longer and more cumbersome.

3. DATA DISPLAY

Human mind can get much more information
when looking at plots than at numbers. This is easily
shown by taking into account at first the sequence of
numbers reported in Table I, and then the plot in
Figure 1. 

It is very clear that, also in a very simple data set
like this one (just 10 samples, and only 1 variable)
the information obtained by looking at the plot is
superior and much more easily available than the
information one can get by analysing the raw
numbers. From the plot, it is very evident that the
samples are clustered into two groups of the same
size, the one at higher values being much tighter
than the one at low values; much more time and
effort is required when we want to get the same
information from the table. 

Let us now take into account a more complex
data set as the one reported in Table II, in which each

Table I
 Ten samples described by one variable

Sample 1 2 3 4 5 6 7 8 9 10

Value 25.3 22.1 25.5 25.6 19.4 25.7 20.2 21.3 25.9 21.8

Figure 1
Scatter plot of the data in Table I.
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object is described by two variables. The same data
are plotted in Figure 2.

This bivariate data set, beyond showing once
more that a plot is much more easily handled by the
human brain than a data table, demonstrates that,
when dealing with more than one variable, the
analysis of just one variable at a time can lead to
wrong results.

In this data set we have 20 samples, supposed to
belong to the same population. When looking at the
plot, we realise that we are in a situation very similar

to what we found with the univariate data set: the
samples are split into two clusters of the same size,
with the objects of the first one more tightly grouped
than the objects of the second one. This conclusion
cannot be reached when looking at one variable at a
time, since none of the two variables is able to
discriminate between the two groups.

If we had a data set with three variables it would
still be possible to visualise the whole information by
a tridimensional scatter plot, in which the
co-ordinates of each object are the values of the
variables. But what to do if the variables are more
than three? 

What we need is therefore a technique allowing to
visualise by simple bi- or tri-dimensional scatter plots
the majority of the information contained in a highly
dimensional data set. This technique is the Principal
Component Analysis (PCA), one of the simplest and
most used methods of multivariate analysis. PCA is
very important especially in the preliminary steps of
an elaboration, when one wants to perform an
exploratory analysis in order to have an overview of
the data.

It is rather common to have to deal with large data
tables, in which, for instance, a series of samples is
described by a number (p) of chemico-physical
parameters. Examples of such data sets can be
samples of olive oils from different origins described
by their content in fatty acids and sterols, or samples
of wines described by FTIR spectra. It is easy to
realise how, especially in spectral data sets, p can be
really very high (>1000); in such cases it would be
impossible to obtain valuable information without the
help of multivariate techniques.

From a geometrical point of view, we can consider
a p-dimensional space, in which each dimension is
associated to one of the variables. In this space each
sample (object) has co-ordinates corresponding to
the values of the variables describing it. Since it is
impossible to visualise all the information at once,
one should stay content with the analysis of several
bi- or three-dimensional plots, each of them showing
a different part of the global information.

It is also evident that not all possible combinations
of two or three variables will give the same quality of
information; for instance, if some variables are very
highly correlated, then the information brought by
each of them would be almost the same.

If two variables are perfectly correlated, then one
of them can be discarded, losing no information at
all; in this way, the dimensionality of our space will be
reduced from p to p-1. If two variables are very highly
correlated, then the elimination of one of them would
produce only a slight loss of information, while the
dimensionality of the space would be reduced to p-1.
So, one can deduce that the information contained in
the “lost” p-th dimension was well below the average
of the information contained in the other dimensions.

Table II
Twenty samples described by two variables

sample var. 1 var. 2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21.2

16.2

13.1

11.6

20.8

10.4

19.5

 9.8

15.2

12.0

17.6

24.0

17.8

15.0

11.0

24.8

12.8

26.5

22.9

 9.7

32.5

21.0

21.7

21.3

29.9

20.6

26.8

25.2

31.2

26.0

28.5

30.0

33.1

24.0

24.2

25.3

23.3

30.6

27.5

22.8

Figure 2
Scatter plot of the data in Table II.
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It is quite apparent now that not all the dimensions
have the same importance, and that, owing to the
correlations among the variables, the “real”
dimensionality of our data matrix is somehow lower
than p. Therefore, it would be very valuable to have a
technique capable of concentrating in a few
variables, and therefore in a few dimensions, the bulk
of our information.

This is exactly what is performed by PCA: it
reduces the dimensionality of the data and extracts
the most relevant part of the information, placing
into the last dimensions the non-structured
information, i.e. the noise; according to these two
characteristics, the information contained in very
complex data matrices can be visualised in just one
or a few plots.

From the mathematical point of view, the goal of
PCA is to obtain, from p variables (X1, X2, … , Xp), p
linear combinations having two important features: to
be uncorrelated and to be ordered according to the
explained variance (i.e., to the information they
contain).

The lack of correlation among the linear
combinations is very important, since it means that
each of them describes different “aspects” of the
original data. As a consequence, the examination of
a limited number of linear combinations (generally
the first two or three) allows us to obtain a good
representation of the studied data set.

From a geometrical point of view, what is
performed by PCA corresponds to look for the
direction that, in the p-dimensional space of the
original variables, brings the greatest possible
amount of information (i.e., explains the greatest
variance). Once the first direction is identified, the
second one is looked for: it will be the direction
explaining the greatest part of the residual variance,
under the constraint of being orthogonal to the first
one. This process goes on until the p-th direction has
been found.

These new directions can be considered as the
axes of a new orthogonal system, obtained after a
simple rotation of the original axes. While in the
original system each direction (i.e., each variable)
brings with it, at least in theory, 1/p of total
information, in the new system the information is
concentrated in the first directions, and decreases
progressively so that in the last ones no information,
but only noise, can be found.

The global dimensionality of the system is always
that of the original data (p), but, since the last
dimensions explain only a very small part of the
information, they can be neglected and one can take
into account only the first dimensions (the “significant
components”). The projection of the objects in this
space of reduced dimensionality retains almost all
the information, which can now be analysed also in a
visual way, by bi- or three-dimensional plots.

These new directions, linear combinations of the
original ones, are the Principal Components (PC) (or
eigenvectors).

With a mathematical notation, we can write:

var(Z1)
  > var(Z2)

  >…  > var(Zp)

where var(Zi) is the variance explained by compo-
nent i.

Furthermore, since a simple rotation has been
performed, the total variance is the same in the two
systems of axes:

Σ var(Xi) = Σ var(Zi)

The first PC is formed by the linear combination

Z1 = a11X1 + a12X2 + …  + a1pXp

explaining the greatest variance, under the condition
that

∑  a 1i
2  =1

This last condition notwithstanding, the variance
of Z1 could be made greater simply by increasing one
of the values of a.

The second PC

Z2 = a21X1 + a22X2 + …  + a2pXp

is the one having var(Z2) as large as possible, under
the conditions that

∑  a 2i
2  =1

and that

∑  a 1i a 2i = 0

(this last condition assures the orthogonality of com-
ponents 1 and 2).

The lower order components are computed in the
same way, always under the two conditions
previously reported.

From a mathematical point of view, PCA is solved
by finding the eigenvalues of the variance-
covariance matrix; they correspond to the variance
explained by the corresponding principal component.
Since the sum of the eigenvalues corresponds to the
sum of the diagonal elements (trace) of the variance-
covariance matrix, and the latter corresponds to the
total variance, one has the confirmation that the
variance explained by the principal components is
the same explained by the original data.
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It is now interesting to locate each object into this
new reference space. The co-ordinate on the first PC
is computed simply by substituting into equation Z1 =
a11X1 + a12X2 + …  + a1pXp the terms Xi with the values
of the corresponding original variables. The
co-ordinates on the other principal components are
then computed in the same way.

These co-ordinates are named scores, while the
constants aij are named loadings. By taking into
account the loadings of the variables on the different
principal components, it is very easy to understand
the importance of each single variable in constituting
each PC; a high absolute value means that the
variable under examination plays an important role
for the component, while a low absolute value means
that it has a very limited importance.

If a loading has positive sign, it means that the
objects with a high value of the corresponding
variable have high scores on that component; if the
sign is negative, then the objects with low values of
the variables will have high scores.

As already mentioned, after a PCA the
information is mainly concentrated on the first
components. As a consequence of that, a plot of the
scores of the objects on the first components allows
the direct visualisation of the global information in a

very efficient way; it is now very easy to detect
similarity between objects (similar objects have a
very similar position in the space) or the presence of
outliers (they are very far from all other objects) or
the existence of clusters.

Taking into account at the same time scores and
loadings it is also possible to interpret very easily the
differences among objects or groups of objects,
since it is very immediate to understand which are
the variables giving the greatest contribution to the
phenomenon under study. Now, let us see the
application of PCA to a real data set. Seven variables
describing the protein composition have been
measured on 23 samples of peas, of different
cultivars. 15 samples were from smooth pea
cultivars, while 8 samples were from wrinkled pea
cultivars. The data are reported in Table III.

It could be interesting to check whether the
protein composition of the smooth peas is different
from that of the wrinkled peas. When looking
separately at each of the seven variables, it can be
seen that none of them completely separates the two
categories. Therefore, one could say that, though
some variables are on average higher in one
category (e.g., the vicilin/legumin ratios are higher in
the wrinkled peas), it is not possible to discriminate

Table III
 Protein composition of peas (Gueguen 1988) (reduced data set). (a) 1 = smooth pea cultivars;

2 = wrinkled pea cultivars; (b) Laurell’s technique; (c) ultracentrifugation

Object Category (a) Protein Non-prot.
material Albumin Globulin Insoluble

Prot. Fract.
Vicilin/

legumin (b)
Vicilin/

legumin (c)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

219

273

255

262

242

235

272

235

225

195

181

236

261

244

239

263

263

309

241

241

292

287

278

20.7

30.2

17.8

30.2

20.8

16.1

14.9

24.5

22.0

20.0

18.7

16.6

22.1

21.9

32.1

19.8

20.3

18.5

16.7

19.3

21.3

21.2

20.0

24.3

12.3

19.3

13.1

20.8

23.2

17.9

25.1

25.0

15.1

16.1

20.0

19.2

19.6

27.9

21.9

22.8

24.6

24.0

24.6

20.0

21.5

23.1

55.7

61.0

53.8

63.2

52.6

60.8

62.1

59.6

58.8

58.6

65.4

57.0

63.7

65.0

58.0

59.4

60.3

58.5

58.6

55.6

54.6

54.7

55.6

20.0

26.6

26.9

23.5

26.5

16.0

19.9

14.9

16.1

26.2

18.4

23.0

17.0

22.2

14.1

18.6

16.8

16.8

17.3

19.7

25.3

23.7

21.3

2.2

1.3

1.5

1.6

0.8

0.8

0.8

0.8

1.9

2.1

2.7

1.2

1.3

1.8

1.6

2.5

2.9

2.2

2.5

3.2

2.0

4.3

2.5

2.0

1.5

2.0

2.3

1.3

1.4

1.3

1.4

1.8

2.1

3.2

1.6

1.6

1.9

1.6

2.5

2.8

2.5

3.7

3.2

3.0

3.3

4.7
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between smooth and wrinkled peas. As a
consequence, one could look for different (and
possible more expensive to be determined)
variables.

After a PCA (Figure 3), it is instead evident that
the information present in the seven variables is
sufficient to clearly discriminate the two categories.
Once more, it has to be pointed out that taking into
account all the variables at the same time gives
much more information than just looking at one
variable at a time.

Now, let us go one step back and let us try to
understand how this result has been obtained. At
first, since the variables have different magnitudes
and different variances, a normalisation has to be
performed, in such a way that each variable will have
the same importance. Autoscaling is the most
frequently used normalisation: it subtracts from each
variable the mean value, and divides the result by the
standard deviation of that variable. After that, each
variable will have mean = 0 and variance = 1. Table IV
shows the data after autoscaling.

The results of PCA are such that PC1 explains
30.3% of the total variance and PC2 23.6%. This
means that the PC1-PC2 plots shown in Figure 3
explain 53.9% of total variance. Table V shows the
loadings of the variables on PC1 and PC2. From it,
the loading plot in Figure 3 is obtained.

From the score plot in Figure 3 it can be seen that
PC1 perfectly separates the two categories. By
looking at the loading plot and at Table V it is possible
to know which are the variables mainly contributing
to PC1 (and therefore to the separation). Variables 6
and 7 (the two vicilin/legumin ratios) have the
loadings with the highest absolute values, both being
positive. This means that these ratios are higher in
the wrinkled peas (the objects of category 2, being
on the right side of the score plot, have higher scores
on PC1) than in the smooth peas. Also albumin and
globulin have high absolute value of their loadings on

PC1, though having opposite sign (positive for
albumin, negative for globulin). This means that

-2 -1 0 1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1

1

11

1

1

1

1

1

1

1

1

1

1

1

2

2 2
2

2

2
2

2

O b je ct sc ore s o n e ig e nv ec to rs 1 -2  (54 %  o f to tal va r ia nc e)

E ige nv ec to r 1 (3 0%  of va ria n ce )

E
ig

en
ve

ct
o

r 2
 (

24
%

 o
f v

ar
ia

nc
e)

-1 -0.5 0 0.5 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

67

E ige nv ec to r 1 (3 0%  of va ria n ce )

E
ig

en
ve

ct
or

 2
 (2

4%
 o

f v
a

ria
n

ce
)

Va riab le  lo ad ing s n o e ig en ve cto rs 1 -2  (54 %  o f to tal va ria nc e)

Figure 3
PCA of the data of Table III. On the left, the score plot of the objects (coded according to the category number), on the right the 

loading plot of the variables (coded according to the order in Table III).

Table IV
Autoscaled data

Protein Non-prot.
material Albumin Globulin Insoluble

Prot. Fract.
Vicilin/

legumin (b)
Vicilin/

legumin (c)

-1.040
0.777

0.171
0.407

-0.266

-0.502
0.743

-0.502

-0.838
-1.847
-2.318
-0.468

0.373
-0.199
-0.367

0.440
0.440
1.988

-0.300
-0.300
1.416

1.248
0.945

-0.094
2.042

-0.746
2.042

-0.071

-1.128
-1.398
0.760

0.198
-0.251
-0.543
-1.015

0.221
0.176
2.469

-0.296
-0.184
-0.588

-0.993
-0.409
0.041

0.019
-0.251

0.837
-2.144

-0.405
-1.946
-0.032

0.564
-0.753
1.036

1.011
-1.449
-1.200
-0.231

-0.430
-0.331
1.732

0.241
0.465
0.912

0.763
0.912

-0.231

0.142
0.539

-0.871
0.614

-1.403
1.230

-1.739

0.558
0.922
0.222

-0.002
-0.058
1.846

-0.507

1.370
1.734

-0.227

0.166
0.418

-0.086

-0.058
-0.899
-1.179

-1.151
-0.899

-0.115
1.495

1.569
0.739
1.471

-1.090
-0.139
-1.359

-1.066
1.398

-0.505
0.617

-0.846
0.422

-1.554

-0.456
-0.895
-0.895

-0.773
-0.188
1.178

0.788
0.203

0.304
-0.727

-0.498
-0.383
-1.300

-1.300
-1.300
-1.300

-0.040
0.189
0.876

-0.842

-0.727
-0.154
-0.383

0.647
1.105
0.304

0.647
1.449
0.075

2.709
0.647

-0.326
-0.887

-0.326
0.010

-1.111

-0.999
-1.111
-0.999

-0.551
-0.214
1.018

-0.775

-0.775
-0.439
-0.775

0.234
0.570
0.234

1.579
1.018
0.794

1.130
2.699

Table V
Loadings of the variables on PC1 and PC2

Protein Non-prot.
material Albumin Globulin Insoluble

Prot. Fract.

Vicilin/
legumin

(b)

Vicilin/
legumin

(c)

PC1
PC2

0.214
0.237

-0.239
0.066

0.370
-0.557

-0.372
-0.219

-0.080
0.739

0.546
0.115

0.563
0.151
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wrinkled peas have higher content of albumin and
lower content of globulin. Table VI reports the scores
of the objects on PC1 and PC2.

As previously shown, the scores of an object are
computed by multiplying the loadings of each
variables by the value of the variable. As an example,
let us compute the score of sample 1 on PC1 (since
the autoscaled data have been used, these are the
values that must be taken into account): 

0.214*(-1.040) + (-0.239)*(-0.094) + 0.370*0.837 +
(-0.372)*(-0.871) + (-0.080)*(-0.115) + 0.546*0.304

+ 0.563*(-0.326) = 0.425

4. CLASSIFICATION

In the previous section we could verify that the
smooth and the wrinkled peas are indeed well
separated in the multivariate space of the variables.
Therefore, we can say that we have two really
different classes. Let us suppose we now get some
smashed peas (so that we can not see if they are
smooth or wrinkled) and we want to know which is
their class. After having performed the chemical
analyses, we can add these data to the previous data
set, run a PCA and see where the new samples are

placed. This will be fine if the new samples fall inside
one of the clouds of points corresponding to a
category, but what if they fall in a somehow
intermediate position? How can we say with
“reasonable certainty” that the new samples are from
a smooth or from a wrinkled pea? We know that PCA
is a very powerful technique for data display, but we
realise that we need something different if we want to
classify new samples. What we want is a technique
producing some “decision rules” discriminating
among the possible categories. While PCA is an
“unsupervised” technique, the classification methods
are “supervised” techniques, since they must be told
to which category each of the objects belongs.

The most commonly used classification
techniques are Linear Discriminant Analysis (LDA)
and Quadratic Discriminant Analysis (QDA). They
define a set of delimiters (according to the number of
categories under study), in such a way that the
multivariate space of the objects is divided in as
many subspaces as the number of categories, and
that each point of the space belongs to one and only
one subspace. Rather than describing in detail the
algorithms behind these techniques, I will focus on
the critical points of a classification.

As I said earlier, the classification techniques use
objects belonging to the different categories to define
boundaries delimiting regions of the space. The final
goal is to apply these classification rules to new objects
that will be classified into one of the existing categories.

The performance of the technique can be
expressed as classification ability and prediction
ability. The difference between “classification” and
“prediction”, though quite subtle at a first glance, is
instead very important and its underestimation can
lead to very bitter deceptions. The classification
ability is the capability of assigning to the correct
category the same objects that have been used to
build the classification rules, while the prediction
ability is the capability of assigning to the correct
category objects that have not been used to build the
classification rules. Since the final goal is the
classification of new samples, it has to be clear that
the predictive ability is by far the most important
score to be looked at.

The results of a classification method can be
expressed in several ways. The most synthetic one is
the percentage of correct classifications (or
predictions. Note: in the following, only the term
“classification” will be used, but it has to be
understood as “classification or prediction”). This can
be obtained as the number of correct classifications
(independently of the category) divided by the total
number of objects, or as the average of the
performance of the model over all the categories.
The two results are very similar when the size of all
the categories is very similar, but can be very
different if the size is quite different. Let us consider

Table VI
Scores of the objects on PC1 and PC2

Object Category Score on PC1 Score on PC2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

0.425

-2.358

0.006

-1.841

-0.858

-1.023

-1.453

-1.153

-0.099

-0.978

-0.404

-0.700

-1.408

-1.217

-0.466

0.714

1.151

1.304

1.781

2.085

1.040

2.797

2.653

-0.627

2.264

1.576

1.548

1.100

-1.735

-0.119

-1.998

-1.623

1.386

-0.439

0.304

-0.784

-0.004

-2.148

-0.312

-0.705

-0.647

-0.806

-0.226

1.724

1.535

0.737
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the case shown in Table VII. The very poor
performance of category 3, by far the smallest one,
almost does not affect the classification rate
computed on the global number of classification,
while it produces a much lower result if the
classification rate is computed as the average of the
three categories.

A more complete and detailed overview of the
performance of the method can be obtained by using
the classification matrix, by which also the categories
to which the wrongly classified objects are assigned
can be known (in many cases the cost of an error can
be quite different according to the category the
sample is assigned to). In it, each row corresponds to
the true category and each column to the category to
which the sample has been assigned. Going on with
the previous example, a possible classification matrix
is the shown in Table VIII.

From it, it can be seen that the 112 objects of
category 1 were classified in the following way: 105
correctly to category 1, none to category 2 and 7 to
category 3. In the same way, it can be deduced that
all the objects of category 3 that were not correctly
classified have been assigned to category 1.
Therefore, it is easy to conclude that category 2 is
well defined and that the classification of its objects
gives no problems at all, while categories 1 and 3 are
quite overlapping; as a consequence, to have a
perfect classification more efforts must be done to
better separate categories 1 and 3. All these
information cannot be obtained from just the
percentage of correct classifications.

If overfitting occurs, then the prediction ability will
be much worse than the classification ability. To avoid
it, it is very important that the sample size is
adequate to the problem and to the technique. A

general rule is that the number of objects should be
more than 5 times (anyway, no less than 3 times) the
number of parameters to be estimated. LDA works
on a pooled variance-covariance matrix: this means
that the total number of objects should be at least 5
times the number of variables. QDA computes a
variance-covariance matrix for each category; this
makes it a more powerful method than LDA, but this
also means that each category should have a
number of objects at least 5 times higher than the
number of variables. This is a good example of how
the more complex, and therefore “better” methods,
sometimes can not be used in a safe way because
their requirements do not correspond to the
characteristics of the data set.

5. MODELLING

In classification, the space is divided into as many
subspaces as categories, and each point belongs to
one and only one category. This means that the
samples that will be predicted by such methods must
belong to one of the categories that have been used
to build the models; if not, they will anyway be
assigned to one of them. To make this concept
clearer, let us suppose to use a classification
technique to discriminate between water and wine.
Of course, this discrimination is very easy, and each
sample of water will be correctly assigned to the
category “water” and each sample of wine will be
correctly assigned to the category “wine”. But what
happens with a sample of orange squash? It will be
assigned either to the category “water” (if variables
such as alcohol are taken into account) or to the
category “wine” (if variables such as colour are
considered).

The classification techniques are therefore not
able to define a new sample as being “something
different” from all the categories of the training set.
This is instead the main feature of the modelling
techniques. Though several techniques are used for
modelling purpose, UNEQ (one of the modelling
versions of QDA) and SIMCA (Soft Independent
Model of Class Analogy) are the most used.

While in classification every point of the space
belongs to one and only one category, with these
techniques the models (one for each category) can
overlap and leave some regions of the space
unassigned. This means that every point of the space
can belong to one category (the sample has been
recognised as a sample of that class), to more than one
category (the sample has such characteristics that it
could be a sample of more than one class) or to none
of the categories (the sample has been considered
as being different from all the classes).

Of course, the “ideal” performance of such a
method would be not only to correctly classify all the
samples in their category (as in the case of a

Table VII
Example of the performance of a classification

technique

Category # Objects Correct class. % Correct class.

1

2

3

total

112

 87

 21

220

105

 86

 10

201

93.8

98.9

47.6

91.4/80.1

Table VIII
Example of a classification matrix

Category 1 2 3

1

2

3

105

  1

 11

 0

86

 0

 7

 0

10
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classification technique), but also that the models of
each category could be able to accept all the sample
of that category and to reject all the samples of the
other categories.

The results of a modelling technique are
expressed the same way as in classification, plus two
very important parameters: specificity and sensitivity.
For category c, its specificity (how much the model
rejects the objects of different categories) is the
percentage of the objects of categories different from
c that have been rejected by the model, while its
sensitivity (how much the model accepts the objects
of the same category) is the percentage of the
objects of category c that have been accepted by the
model.

While the classification techniques need at least
two categories, the modelling techniques can be
applied also when only one category is present. In
this case the technique detects if the new sample
can be considered as a typical sample of that
category or not. This can be very useful in case of
Protected Denomination of Origin products, to verify
whether a sample, declared as having been
produced in a well defined region, has indeed the
characteristics typical of the samples produced in
that region.

The application of a multivariate analysis will
reduce very much the possibility of frauds. While an
“expert” can adulterate a product in such a way that
all the variables, independently considered, still stay
in the accepted range, it is almost impossible to
adulterate a product in such a way that its
multivariate “pattern” is still accepted by the model of
the original product, unless the amount of the
adulterant is so small that it becomes no more
profitable from the economic point of view. 

6. CALIBRATION

Let us imagine to have a set of wine samples and
that on each of them the FTIR spectrum is
measured, together with some variables such as
alcohol content, pH or total acidity. Of course, the
chemical analysis will require much more time than a
simple spectral measurement. It would therefore be
very useful to find a relationship between each of the
chemical variables and the spectrum. This
relationship, after having been established and
validated, will be used to predict the content of the
chemical variables. It is easy to understand how
much time (and money) this will save, since in a few
minutes it will be possible to have the same results
previously obtained by a whole set of chemical
analyses.

Generally speaking, we can say that multivariate
calibration finds relationships between one or more
response variables y and a vector of predictor
variables x. As the previous example should have

shown, the final goal of multivariate calibration is not
just to “describe” the relationship between the x and
the y variables in the set of samples on which the
relationship has been computed, but to find a real
practical application on samples that in a following
time will have the x variables measured.

The model is a linear polynomial (y = b0 + b1x1 +
b2x2 + …  + bKxK + f), where b0 is an offset, the bK

(k = 1, … , K) are regression coefficients and f is a
residual.

The “traditional” method of calculating b, the
vector of regression coefficients, is ordinary least
squares (OLS). This method has anyway two major
limitations, that make it inapplicable to many data
sets:

• it can not handle more variables than objects;
• it is sensitive to collinear variables.
It can be easily seen that both these limitations do

not allow to apply OLS to spectral data sets, where
the samples are described by a very a high number
of highly collinear variables. If one wants anyway to
use OLS to such data, the only way to do it is to
reduce the number of variables and their collinearity
through a suitable feature selection (see later).

When describing the PCA, it has been noticed
that the components are orthogonal (i.e.,
uncorrelated) and that the dimensionality of the
resulting space (i.e., the number of significant
components) is much lower than the dimensionality
of the original space. Therefore, it can be seen that
both the aforementioned limitations have been
overcome. As a consequence, it is possible to apply
OLS to the scores originated by PCA. This technique
is Principal Component Regression (PCR).

It has anyway to be considered that the Principal
Components are computed by taking into account
only the x variables, without considering at all the y
variable(s), and are ranked according to the
explained variance of the “x world”. This means that
it can happen that the first PC has little or no
relevance in explaining the response we are
interested to. This can be easily understood by
considering that, even when we have several
responses, the PC’s to which the responses have to
be regressed will be the same.

Nowadays, the most favoured regression
technique is Partial Least Squares Regression (PLS,
or PLSR). As it happens with PCR, PLS is based on
components (or “latent variables”). The PLS
components are anyway computed by taking into
account both the x and the y variables, and therefore
they are slightly rotated versions of the Principal
Components. As a consequence, the order by which
they are ranked corresponds to the importance in the
modelling of the response. A further difference with
OLS and PCR is that, while the former must work on
each response variable separately, PLS can be
applied to multiple responses at the same time. 
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Being both PCR and PLS based on latent
variables, a very critical point is the number of
components that have to be retained. Though we
know that information is “concentrated” in the first
components and that the last components explain
just noise, it is not always an easy task to detect the
correct number of components (i.e., when
information finishes and noise begins). Selecting a
lower number of components would mean to remove
some useful information (underfitting), while
selecting a higher number of components would
mean to incorporate some noise (overfitting).

Before applying the results of a calibration, it is
very important to look for the presence of outliers.
Three major types of outliers can be detected:
outliers in the x-space (samples for which the
x-variables are very different from that of the rest of
the samples; they can be found by looking at a PCA
of the x-variables), outliers in the y-space (samples
for which the y-variable is very different from those of
the rest of the samples; they can be found by looking
at a histogram of the y-variable) and samples for
which the calibration model is not valid (they can be
found by looking at a histogram of the residuals).

The goodness of a calibration can be
summarised by two values: the percent of variance
explained by the model and the Root Mean Square
Error in Calibration (RMSEC). The former, being a
“normalised” value, gives a first idea about how much
of the variance of the data set is “captured” by the
model; the latter, being an absolute value to be
interpreted the same way as a standard deviation is,
gives information about the magnitude of the error.

As already described in the classification section
and as pointed out at the beginning of this section,
the goal of a calibration is essentially not to describe
the relationship between the response and the
x-variables of the samples on which the calibration is
computed (training, or calibration, set), but to apply it
to future samples on which only the cheaper
x-variables will be measured. In this case too, the
model must be validated by using a set of samples
different from those that have been used to compute
the model (validation, or test, set). The responses of
the objects of the test set will be computed by
applying the model obtained by the training set and
then compared with their “true” response. From these
values the percent of variance explained in prediction
and the Root Mean Square Error in Prediction
(RMSEP) can be computed. Provided that the
objects forming the two sets have been selected
flawlessly, these values give the real performance of
the model on new samples.

7. FEATURE SELECTION

Usually, not all the variables of a data set bring
useful and non-redundant information. Therefore, a

variable (or feature) selection can be highly
beneficial, since by it the following results are
obtained:

• removal of noise and improvement of the
performance;

• reduction of the number of variables to be
measured and simplification of the model.

The removal of noisy variables should always be
looked for. Though some methods can give good
results also with a moderate amount of noise disturbing
the information, it is clear that their performance will
increase when this noise is removed. So, feature
selection is now widely applied also for those
techniques (PLS and PCR) that in the beginning were
considered to be almost insensitive to noise.

While the noise reduction is a common goal for
any data set, the relevance of the reduction of the
number of variables in the final model depends very
much on the kind of data constituting the data set,
and a very wide range of situations are possible.
Let’s consider the extreme conditions:

• each variable requires a separate analysis
• all the variables are obtained by the same

analysis (e.g., chromatographic and
spectroscopic data).

In the first case, each variable not selected
means a reduction in terms of costs and/or analysis
time. The variable selection should therefore always
be made on a cost/benefit basis, looking for the
subset of variables leading to the best compromise
between performance of the model and cost of the
analyses. This means that, in presence of groups of
useful but highly correlated (and therefore
redundant) variables, only one variable per group
should be retained. With such data sets, it is also
possible that a subset of variables giving a slightly
worse result is preferred, if the reduction in
performance is widely compensated by a reduction
in costs or time.

In the second case, the number of retained
variables has no effect on the analysis cost, and the
presence of useful and correlated variables improves
the stability of the model.

Intermediate cases can happen, in which “blocks”
of variables are present. As an example, take the
case of olive oil samples, on each of which the
following analyses have been run: a titration for
acidity, the analysis of peroxides, a UV spectroscopy
for ∆K, a GC for sterols and another GC for fatty
acids. In such a situation, it is not the final number of
variables that counts, but the number of analyses
one can save.

The only possible way to be sure that “the best”
set of variables has been picked up is the
“all-models” techniques, by which all the possible
combinations are tested. Since, with k variables, the
number of possible combinations is 2k-1, it is easy to
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understand that this approach cannot be used
unless the number of variables is really very low
(e.g., with 30 variables more than 109 combinations
should be tested).

The simplest (but least effective) way of
performing a feature selection is to operate on a
“univariate” basis, by retaining those variables having
the greatest discriminating power (in case of a
classification) or the greatest correlation with the
response (in case of a calibration). By doing that,
each variable is taken into account by itself, without
considering how its information “integrates” with the
information brought by the other (selected or
unselected) variables. As a result, if several highly
correlated variables are “good”, they are all selected,
without taking into account that, owing to their
correlation, the information is highly redundant and
therefore at least some of them can be removed
without any decrease in the performance. On the
other side, those variables are not taken into account
that, though not giving by themselves a significant
information, become very important when their
information is integrated with that of other variables.

An improvement is brought by the “sequential”
approaches. They select the best variable and then
the best pair formed by the first and second and so
on in a forward or backward progression. A more
sophisticated approach applies a look back from the
progression to reassess previous selections. The
problem with these approaches is that only a very
small part of the experimental domain is explored
and that the number of models to be tested becomes
very high in case of highly dimensional data sets,
such as spectral data sets. For instance, with 1000
wavelengths, 1000 models are needed for the first
cycle (selection or removal of the first variable), 999
for the second cycle, 998 for the third cycle, and so
on.

More “multivariate” methods of variable selection,
especially suited for PLS applied to spectral data, are
currently available. Among them, we can cite
Interactive Variable Selection (Lindgren 1994),
Uninformative Variable Elimination (Centner 1996),
Iterative Predictor Weighting PLS (Forina 1999) and
Interval PLS (Nørgaard 2000).

8. GENETIC ALGORITHMS

Genetic Algorithms are a general optimization
technique, that has found good applicability in many
fields, especially when the problem is so complex
that it cannot be tackled with the “standard”
techniques. In Chemometrics it has been applied
especially in feature selection (Leardi 2000). GA try
to simulate the evolution of a species according to
the Darwinian theory. Each experimental condition
(in this case, each model) is treated as an individual,
whose “performance” (in the case of a feature

selection for a calibration problem, it can be the
explained variance) is treated as its “fitness”.
Through operators simulating the fights among
individuals (the best ones have a greatest probability
of mating and thus spreading their genome), the
mating among individuals (with the consequent
“birth” of “offspring” having a genome that is derived
by both the parents) and the occurrence of
mutations, the GA result in a pattern of search that,
by mixing “logical” and “random” features, allows a
much more complete search of complex
experimental domains.

Genetic Algorithms have been proposed by
Holland around 1960, but only since 1990, owing to
the development of computer speed, it was possible
to apply them to real problems with acceptable
computing time. The basic idea is a computer
simulation of what happens in nature, and the first
problem concerns the coding of the information in
such a way that it can be processed by a computer.

We can say that the fitness to the environment is
a function of the genetic material of the individual,
the same way as the result of an experiment is a
function of the experimental conditions. Therefore,
we can state that experimental conditions
correspond to what in life is genetic material. We can
also say that genetic material is defined by genes,
the same way as an experimental condition is
defined by the values of the variables relevant to that
experiment. As a consequence, variables
correspond to genes.

At a lower level, we know that the information
contained in each gene is coded by a sequence of
bases: since there are four different bases, each
gene can be considered as a word of variable length,
written by using a four-letter alphabet. The same way,
the binary code can be used to transform the value of
a variable into a word of variable length, written in
bits (two-letter alphabet, 0 and 1).

Therefore, we have the following correspondences:
genetic material (chromosome) = experimental

    conditions
gene = variable
base = bit
As a consequence, each experimental condition

can be coded by a sequence of 0’s and 1’s.
In the case of feature selection, for instance, the

coding is very simple: each chromosome has as many
genes as the number of variables, and each gene is
made by a single bit, being 0 if the variable is not
present in the model, and 1 if the variable is present.

According to the evolution theory, a species
increases its fitness to the environment because,
throughout very many generations, the genetic
material of its individuals becomes better and better.
This depends on the fact that the “bad” individuals do
not survive and that the best individuals have a
greater probability of passing their genetic material

Vol. 53. Fasc. 1 (2002) 125



to the following generation. Beyond this “logical”
development, mutations allow to explore new
“experimental conditions”; usually mutations
generate bad results (e.g., severe pathologies), but it
can happen that random changes of a base produce
a better genetic material.

Several genetic algorithms have been developed.
Though they can be very different, all of them have
three fundamental steps: creation of an original
population, reproductions, mutations. Since the
detailed description of the algorithm would surely be
beyond the scope of this paper, only a very concise
overview of these steps will be given.

The first step is the creation of the original
population. After having set the population size
(usually between 20 and 500 chromosomes), for
each bit of each gene of each individual a random
number is drawn, determining whether that bit will be
0 or 1. At the end of this procedure, the sequence of
bits of each chromosome will be decoded to the real
variables and the associated response will be
measured.

The pairs of chromosomes that will mate and that
will originate the offspring that will form the next
generation can be now selected. Also in this case, a
drawing will take place, but it will be “biased” in such
a way that the probability associated to each
chromosome for being selected will be a function of
its fitness.

From each pair two new chromosomes will
originate, whose genetic material will be derived by
the genetic material of the “parents”. For each gene,
the genetic material of the two parents will be passed
to the two offsprings, with a random drawing
determining which offspring will “inherit” the gene of
which “parent”. While this step simply redistributes to
the new population already existing genes, the
mutation operator makes possible to flip some bits
from 0 to 1 (and vice versa), by that allowing to test
variable values that never happened before or to get
out from deadlock situations.

After reproductions and mutations, the fitness of
the chromosomes of the new generation is computed
and the process continues with the formation of new
pairs, until a stop criterion is met.

9. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANN) try to mimic the
behavior of the nervous system to solve practical
computational problems. As in life, the structural unit
of ANN is the neuron. The input signals are passed to
the neuron body, where they are weighted and
summed, then they are transformed, by passing
through the transfer function into the output of the
neuron. The propagation of the signal is determined
by the connections between the neurons and by their
associated weights. The appropriate setting of the

weights is essential for the proper functioning of the
network. Finding the proper weight setting is
achieved in the training phase.

The neurons are usually organized into three
different layers: the input layer contains as many
neurons as input variables, the hidden layer contains
a variable number of neurons and the output layer
contains as many neurons as output variables. All
units from one layer are connected to all units of the
following layer. The network receives the input
signals through the input layer. Information is passed
to the hidden layer and finally to the output layer that
produces the response.

In the training phase the weights are initially set
randomly. A training set with a number of objects with
known output pattern is presented to the network,
and during the training session the weights are
progressively adapted according to the learning rule.
The weight updates are based on the difference
between the actual and the desired output of the
network, and the weight updating can be done after
each training example that is offered to the network
or after all training examples have been seen once.
The process is then repeated for all training
examples (at each iteration their sequence is
randomized, to avoid bias) until a stop criterion is
reached. Usually several iterations (50 to 5000) are
required.

The main limitation in applying ANN to real data
sets is strictly connected with the architecture of the
ANN itself. For an ANN having i input neurons, h
hidden neurons and o output neurons the number of
weights to be optimized is equal to hi + ho. Having 30
input variables (30 input neurons), 3 hidden neurons
and just one output neuron (e.g., if we want to
classify the geographical origin of olive oils from their
chemical composition), 93 weights must be
optimized. If we apply here too what has been
previously said about the minimum objects/variables
ratio required not to have an overfitting model, we
can see that almost 500 samples (anyway, no less
than 300 samples) are required.

Apart from these objects, a different set has to be
prepared for monitoring the predictive ability, in order
to avoid the phenomenon of overtraining. This
happens when too many iterations are used for
training the network, since after a certain number of
iterations the noise present in the training set is also
modeled by the network; as a consequence, the
network starts loosing its ability to predict.

A third set of objects has also to be taken into
account for testing the predictive ability of the
network on an independent set. It has in fact to be
remembered that a prediction is correct only if the
samples to be predicted have never been seen
during the different steps leading to the final model.

Therefore, it is very easy to realize that ANN,
though a very powerful technique, can be very
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seldom applied in a correct way. Unfortunately, many
people are not at all aware of this strong limitation,
and it can happen to read about ANN that have been
trained with a number of samples much smaller than
what should be required. As a consequence, despite
a very good performance on the training set (due to
overfitting), these ANN will show very poor results
when applied to external data sets.
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