Enhancement of biodiesel production from different species of algae

Authors

  • Abd El-Moneim M. R. Afify Biochemistry Department, Faculty of Agriculture, Cairo University
  • Emad A. Shalaby Biochemistry Department, Faculty of Agriculture, Cairo University
  • Sanaa M. M. Shanab Botany Department, Faculty of Science, Cairo University

DOI:

https://doi.org/10.3989/gya.021610

Keywords:

Biodiesel, Glycerin, Macroalgae, Microalgae, Total lipid

Abstract


Eight algal species (4 Rhodo, 1 chloro and 1 phaeophycean macroalgae, 1 cyanobacterium and 1 green microalga) were used for the production of biodiesel using two extraction solvent systems (Hexane/ether (1:1, v/v)) and (Chloroform/ methanol (2:1, v/v)). Biochemical evaluations of algal species were carried out by estimating biomass, lipid, biodiesel and sediment (glycerin and pigments) percentages. Hexane/ ether (1:1, v/v) extraction solvent system resulted in low lipid recoveries (2.3-3.5% dry weight) while; chloroform/methanol (2: 1, v/v) extraction solvent system was proved to be more efficient for lipid and biodiesel extraction (2.5 – 12.5% dry weight) depending on algal species. The green microalga Dictyochloropsis splendida extract produced the highest lipid and biodiesel yield (12.5 and 8.75% respectively) followed by the cyanobacterium Spirulina platensis (9.2 and 7.5 % respectively). On the other hand, the macroalgae (red, brown and green) produced the lowest biodiesel yield. The fatty acids of Dictyochloropsis splendida Geitler biodiesel were determined using gas liquid chromatography. Lipids, biodiesel and glycerol production of Dictyochloropsis splendida Geitler (the promising alga) were markedly enhanced by either increasing salt concentration or by nitrogen deficiency with maximum production of (26.8, 18.9 and 7.9 % respectively) at nitrogen starvation condition.

Downloads

Download data is not yet available.

References

Bastianoni S, Coppola F, Tiezzi E, Colacevich A, Borghini F, Focardi S. 2008. Biofuel potential production from the Orbetello lagoon macroalgae a comparison with Sunflower feedstock. Biomass and Bioenergy 10, 1-10.

Belarbi EH, Molina-Grima E, Chisti Y. 2000. A process for high yield and scaleable recovery of high purity eicosapentanoic acid esters from microalgae and fish oil. Enzyme Microb. Technolo. 26, 516-29. doi:10.1016/S0141-0229(99)00191-X

Bischoff HW, Bold HC. 1963. Phycological studies. IV. Some algae from Enchanted Rock and related algal species. The Univ. of Texas pub. No 6318. 95

Bligh EG, Dayer WJ. 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem and Physiol. 37, 911-7. PMid:13671378

Chisti Y. 1980-1981. An unusual hydrocarbon. J. Ramsay Soc. 27-28, 24-6.

Chisti Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25, 294-306. doi:10.1016/j.biotechadv.2007.02.001 PMid:17350212

Chisti Y. 2008. Biodiesel from microalgae beats bio-ethanol. Trends in Biotechn. 26, 126-31. doi:10.1016/j.tibtech.2007.12.002 PMid:18221809

Dijkstra AJ. 2006. Revisiting the formation of trans isomers during partial hydrogenation of tricylglycerol oils. Eur. J. Lipid Sci. Technol. 108, 249-64. doi:10.1002/ejlt.200500335

Gavrilescu M, Chisti Y. 2005. Biotechnology a sustainable alternative for chemical industry. Biotechnol. Adv. 23, 471-9. doi:10.1016/j.biotechadv.2005.03.004 PMid:15919172

Holden M. 1965. Chlorophyll. In “chemistry and biochemistry of plant pigments”. (Ed. Goodwin, T.W.). Academic Press, London. pp. 462-88.

Hossain ABM, Salleh A. 2008. Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. and Biotechn. 4, 250-254. doi:10.3844/ajbbsp.2008.250.254

Jang ES, Jung MY, Min DB. 2005. Hydrogenation for low trans and high conjugated fatty acids. Comp. Rev. Food Sci. 4, 22-30. doi:10.1111/j.1541-4337.2005.tb00069.x

Kapdan I K, Kargi F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569-82. doi:10.1016/j.enzmictec.2005.09.015

Lardon L, Helias AQ, Sialve B, Steyer J-P, Bernard O. 2009. Life-cycle assessement of biodiesel production from microalgae. Environ. Sci. Technol. 3, 1-6.

Nagle N, Lemke P. 1990. Production of methyl ester fuel from microalgae. Appl. Biochem. Biotechnol. 24-5, 335-61. National Biodiesel Board. 2002. USA. Available in www.biodiesel.org/.

Ramos MJ, Fernández CM, Casas A, Rodríguez, L. Pérez A. 2009. Bioresource Technology 100, 261-8. doi:10.1016/j.biortech.2008.06.039 PMid:18693011

Sawayama S, Inoue S, Dote Y, Yokoyama SY. 1995. CO2 fixation and oil production through microalgae. Energy Convers Manag. 36, 729-31. doi:10.1016/0196-8904(95)00108-P

Shay EG. 1993. Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenergy, 4: 227-42. http://dx.doi.org/10.1016/0961-9534(93)90080-N doi:10.1016/0961-9534(93)90080-N

Snedecor GW, Cochran WG. (1982). Statistical Methods. The Iowa State Univ. Press., Ames., Iowa, USA. 507 pp.

Spolaore P, Joannis-cassan C, Duran E, Isambert A. 2006. A commercial application of microalgae. J. Biosci. Bioeng. 101, 87-96. doi:10.1263/jbb.101.87 PMid:16569602

Widjaja A. 2009. Lipid production from microalgae as a promising candidate for biodiesel production. Makara, Teknologia 13, 47-51.

Wood BJUB. 1974. Fatty acids and saponifiable lipids. Chapter (8) in: Stewart W. D. P (ED.). Algal Physiology and Biochemistry, 236-65.

Zarrouk C. 1966. Contribution a l’etude d’ une cyanophyceae. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitler. Ph.D. Thesis, University of Paris, France.

Downloads

Published

2010-12-30

How to Cite

1.
El-Moneim M. R. Afify A, Shalaby EA, Shanab SMM. Enhancement of biodiesel production from different species of algae. Grasas aceites [Internet]. 2010Dec.30 [cited 2024Apr.16];61(4):416-22. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1053

Issue

Section

Research