Grasas y Aceites, Vol 64, No 2 (2013)

Predicting Acorn-Grass Weight Gain Index using non-destructive Near Infrared Spectroscopy in order to classify Iberian pig carcasses according to feeding regime


https://doi.org/10.3989/gya.131012

E. De Pedro-Sanz
Ingeniería de Sistemas de Producción Agroganaderos, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Spain

A. Serrano
NIRSoluciones S.L., Spain

E. Zamora-Rojas
Ingeniería de Sistemas de Producción Agroganaderos, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Spain

A. Garrido-Varo
Ingeniería de Sistemas de Producción Agroganaderos, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Spain

J. E. Guerrero-Ginel
Ingeniería de Sistemas de Producción Agroganaderos, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Spain

D. Pérez-Marín
Ingeniería de Sistemas de Producción Agroganaderos, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Spain

J. M. García-Casco
Departamento de Mejora Genética. Centro Nacional de I+D del cerdo Ibérico. INIA, Spain

N. Núñez-Sánchez
NIRSoluciones S.L., Spain

Abstract


The classification of Iberian pig carcasses into different commercial categories according to feeding regime was evaluated by means of a non-destructive analysis of the subcutaneous adipose tissue using Near Infrared Spectroscopy (NIRS). A quantitative approach was used to predict the Acorn-Grass Weight Gain Index (AGWGI), and a set of criteria was established for commercial classification purposes. A total of 719 animals belonging to various batches, reflecting a wide range of feeding regimes, production systems and years, were analyzed with a view to developing and evaluating quantitative NIRS models. Results for the external validation of these models indicate that NIRS made clear differentiation of batches as a function of three feeding regimes possible with high accuracy (Acorn, Recebo and Feed), on the basis of the mean representative spectra of each batch. Moreover, individual analysis of the animals showed a broad consensus between field inspection information and the classification based on the AGWGI NIRS prediction, especially for extreme categories (Acorn and Feed).

Keywords


Acorn-Grass Weight Gain Index; Adipose tissue; Classification; Feeding regime; Iberian pig; Intact; Near Infrared Spectroscopy

Full Text:


PDF

References


Arce L, Domínguez-Vidal A, Rodríguez-Estévez V, López-Vidal S, Ayora-Ca-ada MJ, Valcárcel M. 2009. Feasibility study on the use of infrared spectroscopy for the direct authentication of Iberian pig fattening diet. Anal. Chim. Acta 636, 183-189. http://dx.doi.org/10.1016/j.aca.2009.01.058 PMid:19264166

ASICI. 2012. El MAGRAMA comunica a la interprofesional su propuesta para modificar la norma de calidad del ibérico. http://www.3tres3iberico.com/buscando/el-magrama-comunica-a-lainterprofesional-su-propuesta-para-modific_823/. Accessed on 06/08/2012.

Barnes RJ, Dhanoa MS, Lister SJ. 1989. Standard normal variate transformation and detrending of near infrared diffuse reflectance spectra. Appl. Spectrosc. 43, 772–777. http://dx.doi.org/10.1366/0003702894202201

BOE. 2004. nº 283. ORDEN PRE/3844/2004, de 18 de noviembre, por la que se establecen los métodos oficiales de toma de muestras en canales de cerdos ibéricos y el método de análisis para la determinación de la composición de ácidos grasos de los lípidos totales del tejido adiposo subcutáneo de cerdos ibéricos.

BOE. 2007. nº 193. Real Decreto 1469/2007, de 2 de noviembre, por el que se aprueba la norma de calidad para la carne, el jamón, la paleta y la ca-a de lomo Ibéricos. BOE nº 264.

BOE. 2010a. Ley 7/2010 para la Dehesa. BOE. 2010b. nº 188. Orden ARM/2139/2010, de 16 de julio, por la que se extiende el Acuerdo de la Asociación Interprofesional del Cerdo Ibérico, al conjunto del sector, y se fija la aportación económica obligatoria, para realizar actividades de promoción de los productos del cerdo ibérico, mejorar la información y conocimiento sobre las producciones y los mercados, y realizar programas de investigación, desarrollo, innovación tecnológica y estudios, para las campa-as 2010-2011, 2011-2012 y 2012-2013.

De Pedro E. 2001. Calidad de las canales y de los productos del cerdo Ibérico: Técnicas de control y criterios de calidad, in Buxadé C, Daza A (Eds.), Porcino Ibérico: Aspectos claves. Mundi-Prensa, Madrid, p. 589-622.

De Pedro E, Garrido A, Bares I, Casillas M, Murray I. 1992. Application of near infrared spectroscopy for quality control of Iberian pork industry, in Hildrum KI, Isaksson R, Naes T, Tandberg A (Eds.) Near infrared spectroscopy bridging the gap between data analysis and NIR applications, Ellis Horwood, UK, p. 345-348.

De Pedro E, Garrido A, Lobo A, Dardenne P, Murray I. 1995. Objective classification of Iberian pig carcasses: GC versus NIR, in Batten GD, Flinn PC, Welsh LA, Blakeney AB (Eds.) Leaping ahead with near infrared spectroscopy, NIR Spectroscopy Group. Royal Australian Chemistry Institute, Melbourne, Australia, p. 291-295.

Fernández-Cabanás VM, Garrido-Varo A, García-Olmo J, De Pedro-Sanz E, Dardenne P. 2007. Optimisation of the spectral pre-treatments used for Iberian pig fat NIR calibrations. Chemometr. Intell. Lab. 87, 104-112. http://dx.doi.org/10.1016/j.chemolab.2006.10.005

García-Casco J, Mu-oz M, González E. 2013. Predictive ability of feeding system in Iberian pig by means of several analytical methods. Grasas Aceites. 64, 191-200. http://dx.doi.org/10.3989/gya.130812

García-Olmo J, Garrido-Varo A, De Pedro E. 2001. The transfer of fatty acid calibration equations using one set of unsealed liquid standardisation samples. J. Near Infrared Spec. 9, 49-62. http://dx.doi.org/10.1255/jnirs.294

García-Olmo J, Garrido-Varo A, De Pedro E. 2009. Classification of real farm conditions Iberian pigs according to regime with multivariate models developed by using fatty acids composition or NIR spectral data. Grasas Aceites. 60, 233-237. http://dx.doi.org/10.3989/gya.130408

Garrido-Varo A, De Pedro E. 2007. The role of Near-Infrared Spectroscopy in verifying label information in agro-forestry products, in Burns DA, Ciurczak EW (Eds.) Handbook of Near-Infrared Analysis (3rd Edition). CRC Press. Taylor& Francis Group, London UK.

Garrido-Varo A, García-Olmo J, Pérez-Marín MD. 2004. Analysis of Fats and Oils, in Roberts C, Workman J, Reeves J (Eds.) Near-Infrared Spectroscopy in Agriculture, Agronomy, Crop Science and Soil Science Societies of America, Madison, WI, USA., p. 487-558.

González-Martín I, González-Pérez C, Hernández-Méndez J, Álvarez-García N, Lázaro SM. 2002. Determination of fatty acids in subcutaneous fat of Iberian breed swine by near infrared spectroscopy. A comparative study of the methods for obtaining total lipids: solvents and melting with microwaves. J.Near Infrared Spectrosc.10, 257-268. http://dx.doi.org/10.1255/jnirs.342

González-Martín I, González-Pérez C, Hernández-Méndez J, Álvarez-García N. 2003. Determination of fatty acids in the subcutaneous fat of Iberian breed swine by near infrared spectroscopy (NIRS) with a fiber-optic probe. Meat Sci. 65, 713-719. http://dx.doi.org/10.1016/S0309-1740(02)00273-5

Hervás C, Garrido A, Lucena B, García N, De Pedro E. 1994. Near infrared spectroscopy of Iberian pig carcasses using an artificial neural network. J.Near Infrared Spectrosc. 2, 177-184 http://dx.doi.org/10.1255/jnirs.44

Howard M, Workman Y. 2003. Statistics in Spectroscopy (2nd edition). Academic Press, CA, USA. ISI. 2000. The complete software solution using a single screen for routine analysis, robust calibrations and networking. Infrasoft International Sylver Spring MD, USA.

Pérez-Marín D, De Pedro-Sanz E, Guerrero-Ginel JE, Garrido-Varo A. 2009. A feasibility study on the use of near infrared spectroscopy for prediction of the fatty acid profile in live Iberian pigs and carcasses. Meat Sci. 83, 627-633. http://dx.doi.org/10.1016/j.meatsci.2009.07.012 PMid:20416647

Pérez-Marín D, Fearn T, Guerrero-Ginel JE, Garrido-Varo A. 2010. Robustness in pig fat NIRS calibrations by orthogonal projection. Chemometr. Intell. Lab. 100, 36-40. http://dx.doi.org/10.1016/j.chemolab.2009.10.003

Pérez-Marín D, Garrido-Varo A, De Pedro E, Guerrero-Ginel JE. 2007. Chemometric utilities to achieve robustness in liquid NIRS calibrations: application to pig fat analysis. Chemometr. Intell. Lab. 87, 241-246. http://dx.doi.org/10.1016/j.chemolab.2007.02.004

Shenk JS, Westerhaus MO. 1991. Population structuring of near infrared spectra and modified partial least squares regression. Crop Sci. 31, 1548–1555. http://dx.doi.org/10.2135/cropsci1991.0011183X003100060034x

Shenk JS, Westerhaus MO. 1995. Analysis of agriculture and food products by near infrared reflectance spectroscopy. Monograph, NIR Systems.

Shenk JS, Westerhaus MO. 1996. Calibration the ISI way., in Davies AMC, Williams PC (Eds.) Near infrared spectroscopy: The future waves, NIR Publications, Chichester. U.K, p. 198–202.

Zamora-Rojas E, Pérez-Marín D, De Pedro-Sanz E, Guerrero-Ginel JE, Garrido-Varo A. 2012. In-situ Iberian pig carcass classification using a microelectro-mechanical systems (MEMS)-based near infrared spectroscopy. Meat Sci. 90, 636-642. http://dx.doi.org/10.1016/j.meatsci.2011.10.006 PMid:22075264




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es