Grasas y Aceites, Vol 64, No 4 (2013)

Study of the heat transfer during the alkaline treatment in the processing of Spanish Style green table olives

M. Tarrado-Castellarnau
Facultad de Biología, Departamento de Bioquímica y Biología Molecular, Universitat de Barcelona, Spain

J. M. Domínguez Ortega
Global Olive Consulting, Spain

A. Tarrado-Castellarnau
Departamento de Tecnología de Alimentos, Universitat de Lleida, Spain

R. Pleite Gutiérrez
Global Olive Consulting, Spain


This article describes for the first time at the industrial level the temperature rise that occurs inside the processing tank during the lye treatment. Relationships between variables that define the lye treatment have been determined from the study of the thermal characteristics of this process. The initial temperature influences other variables of this treatment, such as its duration or the slope of the linear increase of temperature produced. The study estates that this generation of heat can be principally caused by the alkaline hydrolysis reactions that occur in the interior of the fruit and, to a lesser extent, by the dilution of sodium hydroxide solution with water present in the pulp of the olives.


Alkaline treatment; Heat transfer; Hydrolysis; Table olives; Temperature; Spanish Style

Full Text:



Al-Widyan MI, Rababah TM, Mayyas A, Al-Shbool M, Yang W. 2010. Geometrical, thermal and mechanical properties of olive fruits. J. Food Process Eng. 33, 257-271.

Chammem N, Kachouri M, Mejri M, Peres C, Boudabous A, Hamdi M. 2005. Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process. Bioresour Technol. 96, 1311-1316. PMid:15734320

Costa J, Cervera S, Cunill F, Esplugas S, Mans C, Mata J. 2002. Curso de Ingeniería Química. Editorial Reverté, S.A., Barcelona.

Fernández-Díez MJ, de Castro R, Garrido A, González-Cancho F, González-Pellissó F, Nosti M, Heredia A, Mosquera IM, Rejano L, Durán MC, Sánchez F, García P, de Castro A. 1985. Biotecnología de la aceituna de mesa. Publicaciones CSIC, Sevilla, Madrid.

Jaramillo Carmona S, de Castro A, Rejano Navarro L. 2011. Proceso tradicional de aderezo de aceitunas verdes de mesa. Racionalización del cocido. Grasas Aceites 62, 375-382.

Kader, AA. 2011. Postharvest technology of horticultural crops. Publication 3529 PDF Third Edition, ANR Publications, University of California, California.

Levenspiel, O. 1998. Flujo de fluidos e intercambio de calor. Editorial Reverté S.A., Barcelona.

Mafra I, Lanza B, Reisa A, Marsilio V, Campestre C, De Angelis M, Coimbra MA. 2001. Effect of ripening on texture, microstructure and cell wall polysaccharide composition of olive fruit (Olea europaea). Physiol. Plant 111, 439-447. PMid:11299008

Maldonado MB, Zuritz CA, Assof MV. 2008. Diffusion of glucose and sodium chloride in green olives during curing as affected by lye treatment. J. Food Eng. 84, 224-230.

Maldonado MB, Zuritz CA, Gascón AD, Rey E. 2003. Difusión de sodio en aceitunas verdes durante el tratamiento alcalino. I: Efecto de la concentración de la lejía. Grasas Aceites 54, 358-364.

Maldonado MB, Zuritz CA, Gascón AD. 2003. Difusión de sodio en aceitunas verdes durante el tratamiento alcalino. II: Efecto de la temperatura de la lejía. Grasas Aceites 54, 365-370.

Maldonado MB, Zuritz CA, Wuilloud RG, Bageta CR, Terreni J, Sánchez MJ. 2011. A simple model of the diffusion phenomena taking place during the debittering process of green table olives. Grasas Aceites 62, 39-48.

Maldonado MB, Zuritz CA. 2003a. A model for diffusion of sodium in green olives at different temperatures and lye concentrations. J. Food Process Eng. 26, 339-356.

Maldonado MB, Zuritz CA. 2003b. Modelación matemática del proceso de tratamiento con hidróxido sódico de aceitunas verdes de mesa. Grasas Aceites 54, 180-187.

Maldonado MB, Zuritz CA. 2004a. Determination of variable diffusion of sodium during debittering of green olives. J. Food Process Eng. 27, 345-358.

Maldonado MB, Zuritz CA. 2004b. Difusión de sodio durante el tratamiento alcalino de aceitunas variedad alore-a. Grasas Aceites 55, 409-414.

Marsilio V, Lanzaf. B, De Angelis M. 1996. Olive Cell Wall Components: Physical and Biochemical Changes during Processing. J. Sci. Food Agric. 70, 35-43.<35::AID-JSFA462>3.0.CO;2-0

Rejano Navarro L, Sánchez-Gómez AH, Vega Macías V. 2008. Nuevas tendencias en el tratamiento alcalino «cocido» de las aceitunas verdes aderezadas al estilo espa-ol o sevillano. Grasas Aceites 59, 197-204.

Sánchez Gómez AH, García García P, Rejano Navarro L. 2006. Trends in table olive production. Grasas Aceites 57, 86-94.

Schneider MA, Stoessel F. 2005. Determination of the kinetic parameters of fast exothermal reactions using a novel microreactor-based calorimeter. Chem. Eng. J .115, 73-83.

Solvay Chemicals International. 2004. NaOH Product Characteristics.

Taylor SD, Kluger R. 1992. Heats of Reaction of Cyclic and Acyclic Phosphate and Phosphonate Esters. "Strain Discrepancy" and Steric Retardation. J. Am. Chem. Soc .114, 3067-3071.

The Dow Chemical Company. 2010. Caustic Soda Solution Handbook.

Tjahjono M, Widjaja E, Garland M. 2009. Combined Online Spectroscopic, Calorimetric, and Chemometric Analysis: Reaction Enthalpy Determinations in Single and Parallel Reactions. Chem.Phys. Chem. 10, 1274-1283. PMid:19360799

Wadsö I. 1958. The heats of hydrolysis of some alkyl acetates. Acta Chem. Scand. 12, 630-634.

Zuritz CA, Maldonado MB. 2004. A simple method to determine diffusion of sodium in the epidermis of green olives. J. Food Process Eng. 27, 328-344.

Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support