Grasas y Aceites, Vol 65, No 3 (2014)

Phenolic content of Sicilian virgin olive oils and their effect on MG-63 human osteoblastic cell proliferation


https://doi.org/10.3989/gya.0111141

O. García-Martínez
Faculty of Health Sciences, University of Granada, Spain

G. Mazzaglia
Faculty of Health Sciences, University of Granada - Private practice, Italy

A. Sánchez-Ortiz
Agricultural Research Training Centre, Ministry of Agriculture and Fisheries, Spain

F. M. Ocaña-Peinado
Department of Statistics and Operations Research, Faculty of Pharmacy, University of Granada, Spain

A. Rivas
Faculty of Pharmacy, University of Granada, Spain

Abstract


The aim of this study was, first, to investigate the influence of olive variety and elevation of orchards on the phenolic compound content of Sicilian virgin olive oils (VOOs) and, second, to investigate the effects of VOO phenolic extracts on osteoblast cell growth using the human MG-63 osteosarcoma cell line. Olive oil phenolic content and its effect on human osteosarcoma cell proliferation varied according to the type of cultivar and the grove altitude. This variation was also observed within the same type of cultivar. This observation demonstrates that the cultivar and the grove location can significantly affect the chemical composition and bioactivity of virgin olive oil. Although this study supports the hypothesis that virgin olive oil phenolic fractions exert a beneficial effect on bone health, further studies assessing the in vivo accessibility of virgin olive oil phenolic compounds to osteoblast cells should be carried out.

Keywords


Osteoblastic cells; Phenolic compounds; Proliferation; Sicily; Virgin olive oil

Full Text:


HTML PDF XML

References


Adlercreutz H. Lignans and human health. 2007. Crit. Rev. Clin. Lab. Sci. 44, 483–525. http://dx.doi.org/10.1080/10408360701612942 PMid:17943494

Baccouri B, Ben Termine S, Campeol E, Cioni PL, Daoud, D, Zarrouk M. 2007. Application of solid-phase microextraction to the analysis of volatile compunds in virgin olive oils from five new cultivars. Food Chem. 102, 850–856. http://dx.doi.org/10.1016/j.foodchem.2006.06.012

Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca AM, Segura-Carretero A, Fernández-Gutiérrez A, Lercker G. 2007. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 12, 1679–1719. http://dx.doi.org/10.3390/12081679 PMid:17960082

Corona G, Tzounis X, Assunta Dessì M, Deiana M, Debnam ES, Visioli F, Spencer JP. 2006. The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic. Res. 40, 647–658. http://dx.doi.org/10.1080/10715760500373000 PMid:16753843

Dugo C, Alfa M, La Pera L, Mavrogeni E, Policino D, Moisano R, Pizziment G. 2004. Characterization of Sicillian Virgin Olive Oils. Note X. A comparison between Cerasuda and Nocellara del Belica varieties, Grasas Aceites 55, 415–422. http://dx.doi.org/10.3989/gya.2004.v55.i4.209

Fernández-Real JM, Bulló M, Moreno-Navarrete JM, Ricart W, Ros E, Estruch R, Salas-Salvadó J. 2012. A Mediterranean diet enriched with olive oil is associated with higher serum total osteocalcin levels in elderly men at high cardiovascular risk. J. Clin. Endocrinol. Metab. 97, 3792–3798. http://dx.doi.org/10.1210/jc.2012-2221 PMid:22855341 PMCid:PMC3462931

Hagiwara K, Goto T, Araki M, Miyazak, H, Hagiwara H. 2011. Olive polyphenol hydroxytyrosol prevents bone loss. Eur. J. Pharmacol. 662, 78–84. http://dx.doi.org/10.1016/j.ejphar.2011.04.023

Hosoya S, Suzuki H, Yamamoto M, Kobayashi K, Abiko Y. 1998. Alkaline phosphatase and type I collagen gene expressions were reduced by hydroxyl radical-treated fibronectin substratum. Mol. Genet. Metab. 65, 31–34. http://dx.doi.org/10.1006/mgme.1998.2734 PMid:9787092

International Olive Oil Council (IOOC), Document COI/T.20/DOC. 29. 2009. International Olive Oil Council, Madrid.

Jiménez B, Sánchez-Ortiz A, Lorenzo ML, Rivas A. 2013. Influence of fruit ripening on agronomic parameters, quality indices, sensory attributes and phenolic compounds of Picudo olive oils. Food Res. Int. 54, 1860–1867. http://dx.doi.org/10.1016/j.foodres.2013.08.016

Kim TH, Jung JW, Ha BG, Hong JM, Park EK, Kim HJ, Kim SY. 2011. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. J. Nutr. Biochem. 22, 8–15. http://dx.doi.org/10.1016/j.jnutbio.2009.11.002 PMid:20233653

Lee JW, Ahn JY, Hasegawa S, Cha BY, Yonezawa T, Nagai K, Seo HJ, Jeon WB, Woo JT. 2009. Inhibitory effect of luteolin on osteoclast differentiation and function. Cytotechnology 61, 125–34. http://dx.doi.org/10.1007/s10616-010-9253-5 PMid:20162352 PMCid:PMC2825295

Lozano-Sánchez J, Segura-Carretero A, Menendez JA, Oliveras-Ferraros C, Cerretani L, Fernández-Gutiérrez A. 2010. Prediction of extra virgin olive oil varieties through their phenolic profile. Potential cytotoxic activity against human breast cancer cells. J. Agric. Food Chem. 22, 9942–55. http://dx.doi.org/10.1021/jf101502q PMid:20795736

Martínez JM, Mu-oz E, Alba J, Lanzon A. 1975. Informe sobre la utilización del analizador de rendimientos "Abencor". Grasas y Aceites 26, 379–385.

Mateos R, Espartero JL, Trujillo M, Ríos JJ, León-Camacho M, Alcudia F, Cert A. 2001. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 49, 2185–2192. http://dx.doi.org/10.1021/jf0013205 PMid:11368575

Mateos R, Pereira-Varo G, Saha S, Cert R, Redondo-Horcajo M, Bravo L, Kroon PA. Acetylation of hydroxytyrosol enhances its transport across differentiated Caco-2 cell monolayers. Food Chem. 125, (2011) 865–872. http://dx.doi.org/10.1016/j.foodchem.2010.09.054

Miró-Casas E, Covas MI, Farre M, Fito M, Ortu-o J, Weinbrenner T, Roset P, de la Torre R. 2003. Hydroxytyrosol disposition in humans. Clin Chem. 49, 945–52. http://dx.doi.org/10.1373/49.6.945 PMid:12765992

Mousa YM, Gerasopoulos D. 1996. Effect of Altitude on Fruit and Oil Quality Characteristics of 'Mastoides' Olives. J. Sci. Food Agr. 71, 345–350. http://dx.doi.org/10.1002/(SICI)1097-0010(199607)71:3<345::AID-JSFA590>3.0.CO;2-T

Napolitano A, Morales F, Sacchi R, Fogliano V. 2008. Relationship between virgin olive oil phenolic compounds and acrylamide formation in fried crisps. J. Agric. Food Chem. 56, 2034–2040. http://dx.doi.org/10.1021/jf0730082 PMid:18290617

Ouni Y, Taamalli A, Guerfel M, Abdelly Ch, Zarrouk M, Flamini G. 2012. The phenolic compounds and compositional quality of Chétoui virgin olive oil: Effect of altitude. Afr. J. Biotechnol. 11, 11842–11850.

Patumi M, Terenziani S, Ridolfi M, Fontanazza G. 2003. Effect of fruit stoning on olive oil quality, J. Am. Oil Chem. Soc. 80, 249–255. http://dx.doi.org/10.1007/s11746-003-0685-1

Poiana M, Romeo FV. 2006. Changes in chemical and microbiological parameters of some varieties of Sicily olives during natural fermentation. Grasas Aceites, 57, 402–408. http://dx.doi.org/10.3989/gya.2006.v57.i4.66

Puel C, Mardon J, Agalias A, Davicco MJ, Lebecque P, Mazur A, et al. 2008. Major phenolic compounds in olive oil modulate bone loss in an ovariectomy/inflammation experimental model. J. Agric. Food Chem. 56, 9417–9422. http://dx.doi.org/10.1021/jf801794q PMid:18800805

Puel C, Mardon J, Kati-Coulibaly S, Davicco MJ, Lebecque P, Obled C, et al. 2007. Black Lucques olives prevented bone loss caused by ovariectomy and talc granulomatosis in rats. Br. J. Nutr. 97, 1012–1020. http://dx.doi.org/10.1017/S0007114507659030 PMid:17408530

Rivas A, Romero A, Mariscal-Arcas M, Monteagudo C, Feriche B, Lorenzo ML, Olea F. 2013. Mediterranean diet and bone mineral density in two age groups of women. Int. J. Food Sci. Nutr. 64, 155–161. http://dx.doi.org/10.3109/09637486.2012.718743 PMid:22946650

Rivas A, Sánchez-Ortiz A, García-Moyano J, Lorenzo ML. 2013. Phenolic acid content and sensory properties of two Spanish monovarietal virgin olive oils. Eur. J. Lipid Sci. 115, 621–630. http://dx.doi.org/10.1002/ejlt.201200371

Saitta M, Lo Curto S, Salvo F, Di Bella G, Dugo G. 2002. Gas chromatographic-tandem mass spectrometric identification of phenolic compounds in Sicilian olive oils, Anal. Chim. Acta 466, 335–344. http://dx.doi.org/10.1016/S0003-2670(02)00572-X

Santiago-Mora R, Casado-Díaz A, De Castro MD, Quesada-Gómez JM. 2011. Oleuropein enhances osteoblastogenesis and inhibits adipogenesis: the effect on differentiation in stem cells derived from bone marrow. Osteoporos Int. 22, 675–684. http://dx.doi.org/10.1007/s00198-010-1270-x PMid:20495905

Servili M, Esposto S, Fabiani R, Urbani S, Taticchi A, Mariucci F, Selvaggini R, Montedoro GF. 2009. "Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure", Inflammopharmacology, 17, 76–84. http://dx.doi.org/10.1007/s10787-008-8014-y PMid:19234678

Suárez M, Valls RM, Romero MP, Macià A, Fernández S, Giralt M, Solà R, Motilva MJ. 2011. Bioavailability of phenols from a phenol-enriched olive oil. Br J Nutr. 106, 1691–701. http://dx.doi.org/10.1017/S0007114511002200 PMid:21736768

Tresserra-Rimbau A, Medina-Remón A, Pérez-Jiménez J, Martínez-González MA, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J, Arós F, Fiol M, Ros E, Serra-Majem L, Pintó X, Muñoz MA, Saez GT, Ruiz-Gutiérrez V, Warnberg J, Estruch R, Lamuela-Raventós RM. 2013. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr. Metab. Cardiovasc Dis. 23, 953–9. http://dx.doi.org/10.1016/j.numecd.2012.10.008 PMid:23332727

Vissers MN, Zock PL, Roodenburg AJ, Leenen R, Katan MB. Olive oil phenols are absorbed in humans. 2002. J. Nutr. 132, 409–17. PMid:11880564

Visioli F, Bernardini E. 2011. Extra virgin olive oil's polyphenols: biological activities. Curr. Pharm. Des. 17, 786–804. http://dx.doi.org/10.2174/138161211795428885 PMid:21443485

Visioli F, Galli C, Grande S, Colonnelli K, Patelli C, Galli G, Caruso D. 2003. Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administration. J Nutr. 133, 2612–5. PMid:12888646

Visioli F, Galli C, Bornet F, Mattei A, Patelli R, Galli G, Caruso D. 2000. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett. 468, 159–60. http://dx.doi.org/10.1016/S0014-5793(00)01216-3




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es