Grasas y Aceites, Vol 65, No 3 (2014)

Kinetic parameter determination of roasted and unroasted argan oil oxidation under Rancimat test conditions


https://doi.org/10.3989/gya.122713

I. Zaanoun
Equipe de recherche de Biotechnologie, Energie et Environnement, École Supérieure de Technologie, Université Ibn Zohr - Ecole ploytechnique d’Agadir, Universiapolis, Morocco

S. Gharby
Laboratoire de Chimie des Plantes et Synthèse Organique, Département de Chimie, Faculté des Sciences, Université MohammedV, Morocco

I. Bakass
Equipe de recherche de Biotechnologie, Energie et Environnement, École Supérieure de Technologie, Université Ibn Zohr, Morocco

E. Ait addi
Equipe de recherche de Biotechnologie, Energie et Environnement, École Supérieure de Technologie, Université Ibn Zohr, Morocco

I. Ait ichou
Laboratoire des Systèmes Aquatiques: Milieux Marin et Continental, Faculté des Sciences, Université Ibn Zohr, Morocco

Abstract


The present study investigated the Kinetic parameter determination of edible argan oil (coldpressed from roasted argan kernels) and cosmetic argan oil (cold-pressed from unroasted argan kernels) under the Rancimat test conditions. The physicochemical parameters of edible and cosmetic argan oil immediately after preparation and after accelerated oxidation test Rancimat at different temperatures 90 °C, 100 °C, 110 °C, 120 °C, 130 °C and 140 °C were determined and compared. The natural logarithms of the kinetic rate constant (kvalue) varied linearly with respect to temperature. An increasing rate of oxidation could be observed as temperature increased. On the basis of the Arrhenius equation and the activated complex theory, frequency factors A, activation energies Ea, Q10 numbers, activation enthalpies ΔH, and activation entropies ΔS for oxidative stability of the vegetable oils were calculated. The accelerated oxidation and Kinetic parameters have shown that edible argan oil can be stored much better than cosmetic oil.

Keywords


Argan oil; Kinetic parameters; Oxidative stability; Rancimat; Roasting

Full Text:


HTML PDF XML

References


Adhvaryu A, Erhan SZ, Liu ZS, Pérez JM. 2000. Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim Acta. 364, 87–97. http://dx.doi.org/10.1016/S0040-6031(00)00626-2

Anwar F, Bhanger MI, Kazi TG. 2003. Relationship between Rancimat and Active Oxygen Method values at varying temperatures for several oils and fats. J Am Oil Chem Soc. 80, 151–155. http://dx.doi.org/10.1007/s11746-003-0668-2

AOCS. 1993. Official Methods and Recommended Practices of the American Oils Chemists Society, AOCS Press, Champaign, IL USA.

Cayuela JA, Rada M, Pérez-Camino MC, Benaissa M, Abdelazziz E, Guinda, A. 2008. Characterization of artisanally and semiautomatically extracted argan oil from Morocco. Eur. J. Lipid Sc. Technol. 110, 1159–1166. http://dx.doi.org/10.1002/ejlt.200800146

Charrouf Z, Guillaume D, Driouich A. 2002. The argan tree, an asset for Morocco. Biofutur 220, 54–57.

Charrouf Z, El Hamchi H, Mallia S, Licitra G, Guillaume D. 2006. Influence of roasting and seed collection on argan oil odorant composition. Natural Product Communications, 1, 399–404.

Charrouf Z, Guillaume D. 2008. Argan oil: occurrence, composition and impact on human health. Eur. J. Lipid Sc. Technol. 110, 632–636. http://dx.doi.org/10.1002/ejlt.200700220

DeMan JM, Tie F, deMan L. 1987. Formation of short chain volatile organic acids in the automated AOM method. J. Am. Oil Chem. Soc. 64, 993–996. http://dx.doi.org/10.1007/BF02542435

European Union Commission, Commision Regulation (EEC) No. 2568/91. 1991. On the characteristics of olive and olive pomace oilsand on their analytical methods. Off. J. Eur. Commun. L248, 29–32.

European Union Commission, Commision Regulation (EEC) No. 1429/92. 1992. On the amendment of (EEC) No. 2568/91. Off. J. Eur. Commun. L50, 17–20.

Faez M, Bchitou R, Bouhaouss A, Gharby S, Harhar H, Guillaume D, Charrouf Z. 2013. Can the dietary element content of virgin argan oils be used for adulteration detection. Food Chem. 136, 105–108. http://dx.doi.org/10.1016/j.foodchem.2012.07.098 PMid:23017399

Farhoosh R, Moosavi SMR. 2007. Rancimat test for the assessment of used frying oils quality. J. Food Lipids, 14, 263–271. http://dx.doi.org/10.1111/j.1745-4522.2007.00084.x

Farhoosh R. 2007. The effect of operational parameters of the Rancimat method on the determination of the oxidative stability measures and shelf-life prediction of soybean oil. J. Am. Oil Chem Soc. 84, 205–209. http://dx.doi.org/10.1007/s11746-006-1030-4

Farhoosh R, Niazmand R, Rezaei M, Sarabi M. 2008. Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. Eur. J. Lipid Sci. Technol. 110, 587–592. http://dx.doi.org/10.1002/ejlt.200800004

Gharby S, Harhar H, Guillaume D, Haddad A, Matthäus B, Charrouf Z. 2011. Oxidative stability of edible argan oil: a two year study. LWT. Food Sci. Technol. 44, 1–8.

Gharby S, Harhar H, Guillaume D, Haddad A, Charrouf Z. 2012. The origin of virgin argan oil's high oxidative stability unraveled. Nat. Prod. Commun. 7, 621–624. PMid:22799092

Gonzaga FB, Pasquini C, Rodrigues CEC, Meirelles AJA. 2007. Comparison of near-infrared emission spectroscopy and the Rancimat method for the determination of oxidative stability. Eur. J. Lipid Sci. Technol. 109, 61–65. http://dx.doi.org/10.1002/ejlt.200600185

Gordon MH, Mursi EA. 1994. Comparison of oil stability based on the Metrohm Rancimat with storage at 207 °C. J. Am. OilChem. Soc. 71, 649–651. http://dx.doi.org/10.1007/BF02540595

Harhar H, Gharby S, Kartah B, El Monfalouti H, Guillaume D, Charrouf Z. 2011. Influence of argan kernel roasting- time on virgin argan oil composition and oxidative stability. Plant Foods for Human Nutrition, 66, 163–168. http://dx.doi.org/10.1007/s11130-011-0220-x PMid:21442181

Hasenhuettl GL, Wan PJ. 1992. Temperature effects on the determination of oxidative stability with the Metrohm Ranci-mat. J. Am. Oil Chem. Soc. 69, 525–527. http://dx.doi.org/10.1007/BF02636102. http://dx.doi.org/10.1007/BF02636102

Hilali M, Charrouf Z, El Aziz Soulhi A, Hachimi L, Guillaume D. 2005. Influence of origin and extraction method on argan oil physico-chemical characteristics and composition. J. Agric. Food Chem. 53, 2081–2087. http://dx.doi.org/10.1021/jf040290t PMid:15769139

IOOC. 2001. Preparation of the Fatty Acid Methyl Esters from Olive Oil and Olive-Pomace Oil. International Olive Oil Council, Madrid. ISO-6886.1989. Animal and vegetable fats and oils. Determination of oxidative stability (accelerated oxidation test).

Jacobsen C, Nielsen NS. 2008. Optimization of oxidative stability of omega-3 enriched foods. In H. Breivik (Ed.), Longchain omega-3 specialty oils (pp. 197–217). Bridgwater: The Oily Press Ltd.

Kowalski B, Ratusz K, Kowalska D, Bekas W. 2004. Determination of the oxidative stability of vegetable oils by differential scanning calorimetry and Rancimat measurements. Eur. J. Lipid Sci. Technol. 106, 165–169. http://dx.doi.org/10.1002/ejlt.200300915

Lee YC, Oh SW, Chang J, Kim IH. 2004. Chemical composition and oxidative stability of safflower oil prepared from safflower seed roasted with different temperatures. Food Chem. 84, 1–6. http://dx.doi.org/10.1016/S0308-8146(03)00158-4

Matthäus BW. 1996. Determination of the oxidative stability of vegetable oils by Rancimat conductivity and chemiluminescence measurements. J. Am. Oil Chem. Soc. 73, 1039–1043. http://dx.doi.org/10.1007/BF02523413

Matthäus B, Guillaume D, Gharby S, Haddad A, Harhar H, Charrouf Z. 2010. Effect of processing on the quality of edible argan oil. Food Chem. 120, 426–432. http://dx.doi.org/10.1016/j.foodchem.2009.10.023

Matthaüs B. 2013. Quality parameters for cold pressed edible argan oils. Nat. Prod. Commun. 1, 37–41.

Mendez E, Sanhueza J, Speisky H, Valenzuela A. 1996. Validation of the Rancimat test for the assessment of the relative stability of fish oils. J. Am. Oil Chem. Soc. 73, 1033–1037. http://dx.doi.org/10.1007/BF02523412

Palozza P, Krinsky NI. 1992. b-Carotene and a-tocopherol are synergistic antioxidants. Archives of Biochemistry and Biophysics, 297, 184–187. http://dx.doi.org/10.1016/0003-9861(92)90658-J

Paquot C, Hautfenne A. 1987. Standard methods for the analysis of oils, fats, and derivatives. 7th rev. Blackwell Scientific Publications. Boston (USA).

Rahmani M. 2005. Composition chimique de l'huile d'argane vierge. Cahiers Agriculture, 14, 461–465.

Reynhout G. 1991. The effect of temperature on the induction time of a stabilizedoil. J. Am. Oil Chem. Soc. 68, 983–984. http://dx.doi.org/10.1007/BF02657549

Robertson GL. 2000. Shelf life of packaged foods, its measurements and prediction. In: Developing New Food Products for a Changing Marketplace. Eds. A. L. Brody, J. B. Lord, Technomic Publishing, Lancaster (UK), pp. 329–353. PMid:10873351

SNIMA-Service de normalisation industrielle-. 2003. Corps gras d'origine animale et végétale Huiles d'argane. Spécifications, Norme Marocaine NM 08.5.090. Rabat (Morocco).

Steel CJ, Dobarganes MC, Barrera-Arellano D. 2005. The influence of natural tocopherols during thermal oxidation of refined and partially hydrogenated soybean oils. Grasas Aceites, 56, 46–52. http://dx.doi.org/10.3989/gya.2005.v56.i1.133

Tan CP, Che Man YB, Selamat JM, Yusoff SA. 2001. Application of Arrhenious kinetics to evaluate oxidative stability in vegetable oils by isothermal differential scanning calorimetry. J. Am. Oil Chem. Soc. 78, 1133–1138. http://dx.doi.org/10.1007/s11746-001-0401-1

Weng XC, Gordon MH. 1993. Antioxidant synergy between phosphatidyl ethanolamine and α- tocopherylquinone. Food Chem. 48, 165-168. http://dx.doi.org/10.1016/0308-8146(93)90051-G




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es