Comparative investigation of minerals, chlorophylls contents, fatty acid composition and thermal profiles of olive leaves (Olea europeae L.) as by-product

Authors

  • N. Bahloul Groupe de recherche en Génie des Procédés Agro-alimentaires. Laboratoire de Mécanique des Fluides Appliquée, Génie de Procédés et Environnement Ecole Nationale d’Ingénieurs de Sfax
  • N. Kechaou Groupe de recherche en Génie des Procédés Agro-alimentaires. Laboratoire de Mécanique des Fluides Appliquée, Génie de Procédés et Environnement Ecole Nationale d’Ingénieurs de Sfax
  • N. B. Mihoubi UR, Ecophysiologie et Procédés Agroalimentaires, UR 11ES44. Institut Supérieur de Biotechnologie de Sidi Thabet. Université de la Mannouba

DOI:

https://doi.org/10.3989/gya.0102141

Keywords:

Chlorophylls, DSC melting curves, Fatty acid composition, Minerals, Olive leaves

Abstract


This work presents a chemical (the minerals, chlorophyll contents and fatty acids) and thermophysical investigation (DSC profile) of four varieties of olive leaves grown in Tunisia. The total chlorophy1l contents of olive leaves ranged from 1132.33 to 1795.93 ppm. The results showed that linolenic acid (C18:3) is the major fatty acid in olive leaves (from 30.02 to 42.16%), followed by oleic acid (C18:1) and palmitic acid (C16:0). The thermal profiles of olive leaf extracts determined by their DSC melting curves revealed simple thermograms with a single peak after melting. The hexane extract of the Chemchali variety, which contained relatively high unsaturated fatty acids and low saturated fatty acid levels, exhibited the lowest peak temperature value (54.59 °C) and required the smallest amount of energy for melting (31.57 J·g−1). This study showed that olive leaves possessed physicochemical properties and a fatty acid composition that may become interesting for industrial applications.

Downloads

Download data is not yet available.

References

Altio E, Baycin D, Bayraktar O, Ulku S. 2008. Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Sep. Purif. Technol. 62, 342–348. http://dx.doi.org/10.1016/j.seppur.2008.01.022

AOAC 1984. Official methods of analysis of the Association of the Official Analytical Chemists. VA, USA: Association of the Official Analytical Chemists, Inc.

Bahloul N, Boudhrioua N, Kouhila M, Kechaou N. 2009. Effect of convective solar drying on colour, total phenols and radical scavenging activity of olive leaves (Olea europaea L.). Int. J. Food Sci. Technol. 44, 2561–2567. http://dx.doi.org/10.1111/j.1365-2621.2009.02084.x

Bojovic B, Markovic A. 2009. Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujevac J. Sci. 31, 69–74.

Briante R, Patumi M, Terenziani S, Bismuto E, Febbraio F, Nucci R. 2002. Olea europaea L. leaf extract and derivatives: Antioxidant properties. J.Agric. Food Chem. 50, 4934–4940. http://dx.doi.org/10.1021/jf025540p PMid:12166985

Chen MJ, Li J, Dai X, Sun Y, Chen FZ. 2011. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology 12, 187–192. http://dx.doi.org/10.1007/s10201-010-0336-y

Chiavaro E, Vittadini E, Rodriguez-Estrada MT, Cerretani L,Bendini A. 2008. Monovarietal extra virgin olive oils. Correlation between thermal properties and chemical composition: Heating thermograms. J. Agric. Food Chem. 56, 496–501. http://dx.doi.org/10.1021/jf072680w PMid:18167077

Christopoulou E, Lazaraki M, Komaitis M, Kaselimis K. 2004. Effectiveness of determinations of fatty acids and triglycerides for the detection of adulteration of olive oils with vegetable oils. Food Chem. 84, 463–474. http://dx.doi.org/10.1016/S0308-8146(03)00273-5

Dabbou S, Rjiba I, Nakbi A, Gazzah N, Issaoui M, Hammami M. 2010. Compositional quality of virgin olive oils from cultivars introduced in Tunisian arid zones in comparison to Chemlali cultivars. Sci. Hortc-Amsterdam 124, 122–127. http://dx.doi.org/10.1016/j.scienta.2009.12.017

Darmstadt GL, Mao-Qiang M, Chi E, Saha SK, Ziboh VA, Black RE, Santosham M, Elias PM. 2002. Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatr. 91, 546–554. http://dx.doi.org/10.1111/j.1651-2227.2002.tb03275.x PMid:12113324

Delgado-Pertinez M, Gomez-Cabrera A, Garrido A. 2000. Predicting the nutritive value of the olive leaf (Olea europaea): digestibility and chemical composition and in vitro studies, Anim. Feed Sci. Tech. 87, 187–201. http://dx.doi.org/10.1016/S0377-8401(00)00195-4

de Man L, de Man JM, Blackman B. 1991. Physical and textural characteristics of some North American shortenings. J. Am. Oil Chem. Soc. 68, 63–69. http://dx.doi.org/10.1007/BF02662318

El-Adawy TA, Taha KM. 2001.Characteristics and composition of different seed oils and flours. Food Chem. 74, 47–54. http://dx.doi.org/10.1016/S0308-8146(00)00337-X

FAOSTAT 2009. Food and Agriculture Organization. Base de données statistiques de la FAO, Rome, Italy.

Farag RS, El-Baroty GS, Basuny AM. 2003. The influence of phenolic extracts obtained from the olive plant (cvs. Picual and Kronakii) on the stability of sunflower oil. Int. J. Food Sci. Technol. 38, 81–87. http://dx.doi.org/10.1046/j.1365-2621.2003.00665.x

Fasina OO, Craig-Schmidt M, Colley Z, Hallman H. 2008. Predicting melting characteristics of vegetable oils from fatty acid composition. LWT – Food Sci. Tech. 41, 1501–1505.

Fegeros K, Zervas G, Apsokardos F, Vastardis J, Apostolaki E. 1995. Nutritive evaluation of ammonia treated olive tree leaves for lactating sheep. Small Ruminant Res. 17, 9–15. http://dx.doi.org/10.1016/0921-4488(95)00657-7

Gloria H, Aguilera JM. 1998. Assessment of the quality of heated oils by differential scanning calorimetry. J. Agric. Food Chem. 46, 1363–1368. http://dx.doi.org/10.1021/jf9703664

Gonçalves EM, Cruz RMS, Abreu M, Brandao TRS, Silva CLM. 2009. Biochemical and colour changes of watercress (Nasturtium officinale R. Br.) during freezing and frozen storage. J. Food Eng. 93, 32–39. http://dx.doi.org/10.1016/j.jfoodeng.2008.12.027

Guimarães R, Barros L, Carvalho AM, Sousa MJ, Sá Morais J, Ferreira ICFR. 2009. Aromatic plants as a source of important phytochemicals: Vitamins, sugars and fatty acids in Cistus ladanifer, Cupressus lusitanica and Eucalyptus gunnii leaves. Ind. Crops Prod. 30, 427–430. http://dx.doi.org/10.1016/j.indcrop.2009.08.002

Gutiérrez-Rosales F, Garrido–Fernández J, Gallardo-Guerrero L, Gandul-Rojas B. 1992. Action of chlorophylls in the stability of virgin olive oils, J. Am.Oil Chem. Soc. 69, 866–871. http://dx.doi.org/10.1007/BF02636334

Higueras P, Amorós JA, Esbrí JM, García-Navarro FJ, Pérez de los Reyes C, Moreno G. 2012. Time and space variations in mercury and other trace element contents in olive tree leaves from the Almadén Hg-mining district, J. Geochem. Exploration 123, 143–151. http://dx.doi.org/10.1016/j.gexplo.2012.04.012

Japón-Luján R, Luque de Castro MD. 2006. Superheated liquid extraction of oleuropein and related biophenols from olive leaves. J. Chromatogr. 1136, 185–191. http://dx.doi.org/10.1016/j.chroma.2006.09.081 PMid:17045596

Kerem DZ, Yogev N, Zipori I, Lavee S, Ben-David E. 2011. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hort. 127, 358–366. http://dx.doi.org/10.1016/j.scienta.2010.11.008

Khayyal MT, El-Ghazaly MA, Abdallah DM, Nassar NN, Okpanyi SN, Kreuter MH. 2002. Blood pressure lowering effect of an olive leaf extract (Olea europaea) in L-NAME induced hypertension in rats. Arznei-forschung 52, 797–802.

Klancnik G, Medved J, Mrvar P. 2010. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation. Mater. Geoenvironment 57, 127–142.

Lee OH, Lee HB, Lee J, Son JY, Rhee SK, Kim HD, Kim YC, Lee BY. 2005. Chemical properties of olive and bay leaves. J. Korean Soc. Food Sci. Nutri. 34, 503–508. http://dx.doi.org/10.3746/jkfn.2005.34.4.503

Lee YJ, Yang CM, Chang KW, Shen Y. 2011. Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Bot. Stud. 52, 295–303.

Lynch J, Marschner P, Rengel Z. 2012. Chapter 13 – Effect of Internal and External Factors on Root Growth and Development. Marschner's Mineral Nutrition of Higher Plants (Third Edition), pp. 331–346.

Manai H, Mahjoub Haddada F, Oueslati I, Daoud D, Zarrouk M. 2008. Characterization of monovarietal virgin olive oils from six crossing varieties. Sci. Hort. 115, 252–260. http://dx.doi.org/10.1016/j.scienta.2007.10.011

Marschner P, Rengel Z. 2012. Chapter 12 – Nutrient Availability in Soils. Marschner's Mineral Nutrition of Higher Plants (Third Edition), pp. 315–330.

Martín-García AI, Molina-Alcaide E. 2008. Effect of different drying procedures on the nutritive value of olive (Olea europaea L.) leaves for ruminants. Anim. Feed Sci. Tech. 14, 317–329. http://dx.doi.org/10.1016/j.anifeedsci.2007.09.005

Mc Carron DA, Reusser ME. 2001. Are Low Intakes of Calcium and Potassium Important Causes of Cardiovascular Disease? Am. J. Hypertension 14, 206–212. http://dx.doi.org/10.1016/S0895-7061(01)02090-8

Molina-Alcaide E, Yanez-Ruiz DR. 2008. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed Sci. Tech. 147, 247–264. http://dx.doi.org/10.1016/j.anifeedsci.2007.09.021

Paiva-Martins F, Correia R, Felix S, Ferreira P, Gordon M. 2007. Effects of enrichment of refined olive oil with phenolic compounds from olive leaves. J. Agric. Food Chem. 55, 4139–4143. http://dx.doi.org/10.1021/jf063093y PMid:17439139

Ruiz ML, Castillo D, Dobson D, Brennan R, Gordon S. 2002. Genotypic variation in fatty acid content of blackcurrant seeds. J. Agric. Food Chem. 50, 332–335. http://dx.doi.org/10.1021/jf010899j

Schacky C, Harris WS. 2007. Cardiovascular benefits of omega-3 fatty acids. Cardiovasc. Res. 73, 310–315. http://dx.doi.org/10.1016/j.cardiores.2006.08.019 PMid:16979604

Schoefs B. 2002. Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci. Tech. 13, 361–371. http://dx.doi.org/10.1016/S0924-2244(02)00182-6

Simopoulos AP. 2002. The importance of the ratio of omega-6/ omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365–379. http://dx.doi.org/10.1016/S0753-3322(02)00253-6

Tabera J, Guinda A, Ruiz-Rodriguez A, Senorans JF, Ibanez E, Albi T. 2004. Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J. Agric. Food Chem. 52, 4774–4779. http://dx.doi.org/10.1021/jf049881+ PMid:15264913

Tan CP, Che Man YB. 2002. Analytical, Nutritional and Clinical Methods Section. Differential scanning calorimetric analysis of palm oil, palm oil based products and coconut oil: effects of scanning rate variation. Food Chem. 76, 89–102. http://dx.doi.org/10.1016/S0308-8146(01)00241-2

Tessier A. 1994. Phytothérapie analytique, phytochimie et pharmacologie. Editions Marc-Aurèle, France, pp. 205–210.

William EC, 2000. Importance of n−3 fatty acids in health and disease. Am. J. Clin. Nutrit. 71, 171–175.

Zarzuelo A. 1991. Vasodilator effect of olive leaf. Planta Med. 57, 417–419. http://dx.doi.org/10.1055/s-2006-960138 PMid:1798793

Published

2014-09-30

How to Cite

1.
Bahloul N, Kechaou N, Mihoubi NB. Comparative investigation of minerals, chlorophylls contents, fatty acid composition and thermal profiles of olive leaves (Olea europeae L.) as by-product. Grasas aceites [Internet]. 2014Sep.30 [cited 2024Apr.18];65(3):e035. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1500

Issue

Section

Research