Fatty acid composition and some physicochemical characteristics of Sterculia apetala seed oils

Authors

  • S. Herrera-Meza Instituto de Investigaciones Psicológicas, Universidad Veracruzana
  • A. J. Martínez Centro de Investigaciones Biomédicas, Universidad Veracruzana
  • M. G. Sánchez-Otero Instituto de Neuroetología, Universidad Veracruzana
  • M. R. Mendoza-López Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana
  • O. García-Barradas Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana
  • G. R. Ortiz-Viveros Instituto de Investigaciones Psicológicas, Universidad Veracruzana
  • R. M. Oliart-Ros Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz

DOI:

https://doi.org/10.3989/gya.0223141

Keywords:

Cyclopropenoic Fatty Acids, Sterculia apetala, Sterculia mexicana, Sterculic acid

Abstract


In the tropical rain forests of southeastern Mexico, the use of Sterculia mexicana and Sterculia apetala seed oils for human and animal nutrition is common. However, the seeds contain cyclopropene fatty acids, whose consumption is related with beneficial as well as detrimental physiological effects. The aim of this study was to determine the fatty acid profile and the physicochemical characteristics of S. apetala seed oil and to evaluate the effect of roasting on both aspects. Cyclopropenoic fatty acids, sterculic acid and malvalic acid were identified in the natural and roasted seed oils. The major component in the seed oil was sterculic acid, as has been reported for Sterculia mexicana and Sterculia foetida. The roasting process modified some physicochemical properties and the fatty acid composition of the seed oil, particularly by decreasing its content of sterculic acid. To our knowledge, this is the first report on the fatty acid composition of S. apetala seed oil.

Downloads

Download data is not yet available.

References

AOAC. 1990. Official methods of analysis. 14th edn. Washington, DC: Association of Official Analytical Chemists.

Badami RC, Patil KC, Subbarao YV, Sastry GSR, Vihwanath Rao GK. 1980. Cyclopropenoid fatty acids of sterculia oils by gas liquid chromatography. Fette, Seifen. Anstrichm. 82, 317–318. http://dx.doi.org/10.1002/lipi.19800820806

Bao X, Thelen JJ, Bonaventure G, Ohlrogge JB. 2003. Characterization of cyclopropane fatty acid synthase from Sterculia foetida. J. Biol. Chem. 278, 12846–12853. http://dx.doi.org/10.1074/jbc.M212464200 PMid:12562759

Bello EI, Agg M. 2012. Biodiesel production from ground nut oil. J. Emerging Trends in Engineering and Appl. Sci. 3, 276–280.

Bello MO, Lorine TL, Adeoyea DO, Oladimejib AO. 2011. Physicochemical properties and fatty acids profile of seed oil of Telfairia occidentalis. Int. J. Eng. Sci. 11, 9–14.

Benitez BG, Pulido-Salas MT, Equihua M. 2004. Árboles multiusos nativos de Veracruz para reforestación, restauración y plantaciones. Instituto de Ecología, A. C., SIGOLFO, CONAFOR eds. Xalapa, Veracruz, México, pp. 230–233.

Chopra RN, Nayar SL, Chopra IC. 1992. Glosary of indian medicinal plants. pp. 234, Publication and Information Directorate, CSIR, New Delhi.

Christie WW. 1982. A simple procedure for transmethylation of glycerolipids and cholesterol esters. J. Lipid Res. 23, 1073–5.

Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS, Bauman DE. 2001. The role of Δ-9 desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Chem. 12, 622–630.

Gomez EF, Bauman DE, Ntambi JM, Fox BG. 2003. Effects of sterculic acid on stearoyl-CoA desaturase in differentiating 3T3L1 adipocytes. Biochem Bioph Co 300, 316–326. http://dx.doi.org/10.1016/S0006-291X(02)02842-5

Herrera-Meza MS, Mendoza-López MR, García-Barradas O, Sanchez-Otero MG, Silva-Hernández ER, Angulo JO, Oliart-Ros RM. 2013. Dietary anhydrous milk fat naturally enriched with conjugated linoleic acid and vaccenic acid modify cardiovascular risk biomarkers in spontaneously hypertensive rats. Int. J. Food Sci. Nutr. 64, 574–586. http://dx.doi.org/10.3109/09637486.2013.763908 PMid:23360131

Ibeto CN, Okoye COB, Ofoefule AU. 2012. Comparative Study of the Physicochemical Characterization of Some Oils as Potential Feedstock for Biodiesel Production. Renew Energ Article ID 621518.

Lee DJ, Wales JH, Sinnhuber RO. 1971. Promotion of aflatoxininduced hepatoma growth in trout by methyl malvalate and sterculate. Cancer Res. 31, 960–63. PMid:4327087

Lock AL, Corl BA, Barbano DM, Bauman DE. 2004. The anticarcinogenic effect of trans-11 18:1 is dependent on its conversion to cis-9, trans-11 CLA by D9-desaturase in rats. J. Nutr. 134, 2698–2704. PMid:15465769

Major CA, Ryan K, Bennett AJ, Lock AL, Bauman DE, Salter AM. 2008. Inhibition of stearoyl CoA desaturase activity induces hypercholesterolemia in the cholesterol-fed hamster. J. Lipid Res. 49, 1456–1465. http://dx.doi.org/10.1194/jlr.M700596-JLR200 PMid:18310771

Miralles J, Bassene E, Gaydou EM. 1993. Determination of cyclopropenoid fatty acids in Sterculia seed oils from Senegal. J. Am. Oil Chem. Soc. 70, 205–206. http://dx.doi.org/10.1007/BF02542627

MujumdarAM, Naik DG, Waghole RJ, Kulkarni DK, Kumbhojkar MS. 2000. Pharmacological studies on Sterculia foetida leaves. Pharm. Biol. 38, 13–17. http://dx.doi.org/10.1076/1388-0209(200001)3811-BFT013

Nayak BS, Patel KN. 2010. Physicochemical characterization of seed and seed oil of jatrophacurcas l. collected from Bardoli (South Gujarat) (Ciri-ciri Fizikokimia Biji dan Minyak Biji Jatropha curcas L. diambil dari Bardoli (Selatan Gujarat)) Sains Malays 39, 951–955.

Nitao DZ, Singh BP, Queiroga NV, Oliveira CJM. 2008. Sterculia striata seed kernel oil: characterization and thermal stability. Grasas Aceites 59, 68–73.

Ortinau LC, Pickering RT, Nickelson KJ, Stromsdorfer KL, Naik CY, Haynes RA, Bauman DE, Rector RS, Fritsche KL, Perfield JW. 2012. Sterculic oil, a natural scd1 inhibitor, improves glucose tolerance in obese ob/ ob mice. ISRN Endocrinol. 2012, 947323. http://dx.doi.org/10.5402/2012/947323 PMid:23209931 PMCid:PMC3504409

Pawlowski NE, Hendricks JD, Bailey ML, Nixon JE, Bailey GS. 1985. Structural-bioactivity relationship for tumor promotion by cyclopropenes. J. Agric. Food Chem. 33, 767–770. http://dx.doi.org/10.1021/jf00064a052

Penington TD, Sarukhán J. 2005. Arboles tropicales de México para la identificación de las principales especies. Universidad Nacional Autónoma de México. Dirección general de publicaciones y fomento editorial, eds. México, D.F, pp 384–385.

Schmid KM, Patterson GW. 1988. Effects of cyclopropenoid fatty acids on fungal growth and lipid composition. Lipids 23I, 248–252. http://dx.doi.org/10.1007/BF02535466

Vázquez Torres M, Armenta Montero S, Campos Jiménez J, Carvajal Hernández CI. 2010. Árboles de la región de los Tuxtlas. Library Congress QK211, ISBN 978-607-33-0007-0.

Vickery JR. 1980. The fatty acid composition of seeds oils from the plant families with particular reference to cyclopropene and dihydrosterculic acids. J. Am. Oil Chem. Soc. 57, 87–91. http://dx.doi.org/10.1007/BF02674370

Published

2014-09-30

How to Cite

1.
Herrera-Meza S, Martínez AJ, Sánchez-Otero MG, Mendoza-López MR, García-Barradas O, Ortiz-Viveros GR, Oliart-Ros RM. Fatty acid composition and some physicochemical characteristics of Sterculia apetala seed oils. Grasas aceites [Internet]. 2014Sep.30 [cited 2024Mar.28];65(3):e039. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1504

Issue

Section

Research

Most read articles by the same author(s)