Grasas y Aceites, Vol 66, No 1 (2015)

Detoxification of Jatropha curcas oil by ultraviolet irradiation combined with ethanol washing


https://doi.org/10.3989/gya.0723142

Jh. Xiao
Engineering Laboratory for Agro-processing and Safety Control of Jiangxi Development and Reform Commission & School of Food Science and Engineering, Jiangxi Agricultural University, China

X. Mao
School of Food Science and Technology, Jiangnan University, China

H. Zhang
School of Food Science and Technology, Jiangnan University, China

L. Niu
Engineering Laboratory for Agro-processing and Safety Control of Jiangxi Development and Reform Commission & School of Food Science and Engineering, Jiangxi Agricultural University, China

Abstract


Jatropha curcas oil (JCO) is non-edible due to the content of phorbolesters (PEs) which are very toxic. The aim of this study was to evaluate the potential of JCO, treated by ultraviolet irradiation combined with ethanol washing, as an edible oil. The results showed that PEs can be significantly decreased by 100% (p < 0.05), but the treatments produced no significant changes (p < 0.05) in the fatty acids composition (FAC) and triacylglycerols (TAGs) in the detoxified Jatropha curcas oil (DJCO). In addition, the quality of DJCO was improved with enhanced DPPH radical scavenging. Therefore, DJCO with good quality will become a good resource for edible oil.

Keywords


Edible oil; Jatropha curcas oil; Phorbolesters; Physiochemical properties

Full Text:


HTML PDF XML

References


Abdu-Aguye I, Sannusi A, Alafiya-Tayo R, Bhusnurmath S. 1986. Acute toxicity studies with Jatropha curcas L. Hum. Exp. Toxicol. 5, 269. http://dx.doi.org/10.1177/096032718600500409

Abdulla R, Chan ES, Ravindra P. 2011. Biodiesel production from Jatropha curcas: a critical review. Crit. Rev. Biotechnol. 31, 53–64. http://dx.doi.org/10.3109/07388551.2010.487185

AOCS. 2000. Methods and recommended practices of the Am. Oil Chem. Soc. Champaign.

Bail S, Stuebiger G, Krist S, Unterweger H, Buchbauer G. 2008. Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity. Food Chem. 108, 1122–1132. http://dx.doi.org/10.1016/j.foodchem.2007.11.063

Chen SQ, Jiang KX, Cao BS, Liu YQ, Cai XF, Liu XL, Cao Y, Liu XY, Shi WN. 2012. Distribution of irradiated foods in China. Food Control 28, 237–239. http://dx.doi.org/10.1016/j.foodcont.2012.04.019

de Urzedo AP, Diniz M, Nascentes CC, Catharino RR, Eberlin MN, Augusti R. 2007. Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry. J. Mass Spectrom. 42, 1319–1325. http://dx.doi.org/10.1002/jms.1204

Devappa RK, Makkar H, Becker K. 2010. Optimization of conditions for the extraction of phorbol esters from Jatropha oil. Biomass Bioenerg. 34, 1125–1133. http://dx.doi.org/10.1016/j.biombioe.2010.03.001

Devappa RK, Makkar HP, Becker K. 2010. Jatropha toxicity— a review. J. Tox Environ Health 13, 476–507. http://dx.doi.org/10.1080/10937404.2010.499736

Devappa RK, Rajesh SK, Kumar V, Makkar HP, Becker K. 2012. Activities of Jatropha curcas phorbol esters in various bioassays. Ecotox Environ. Safety 78, 57–62. http://dx.doi.org/10.1016/j.ecoenv.2011.11.002

Devappa RK, Roach JS, Makkar HP, Becker K. 2013. Occular and dermal toxicity of Jatropha curcas phorbol esters. Ecotox Environ. Safety 94, 172–178. http://dx.doi.org/10.1016/j.ecoenv.2013.04.021

Eisenmenger M, Dunford N. 2008. Bioactive components of commercial and supercritical carbon dioxide processed wheat germ oil. J. Am. Oil. Chem. Soc. 85, 55–61. http://dx.doi.org/10.1007/s11746-007-1163-0

Gámez-Meza N, Alday-Lara PP, Makkar HP, Becker K, Medina-Juárez LA. 2012. Chemical characterisation of kernels, kernel meals and oils from Jatropha cordata and Jatropha cardiophylla seeds. J. Sci. Food Agric. 93, 1706–1710. http://dx.doi.org/10.1002/jsfa.5955

Goel G, Makkar HP, Francis G, Becker K. 2007. Phorbol esters: structure, biological activity, and toxicity in animals. Int. J. Toxicol. 26, 279–288. http://dx.doi.org/10.1080/10915810701464641

Ichihashi K, Yuki D, Kurokawa H, Igarashi A, Yajima T, Fujiwara M, Maeno K, Sekiguchi S, Iwata M, Nishino H. 2011. Dynamic analysis of phorbol esters in the manufacturing process of fatty acid methyl esters from Jatropha curcas seed oil. J. Am. Oil Chem. Soc. 88, 851–861. http://dx.doi.org/10.1007/s11746-010-1741-4

Jiang ST, Niu LY. 2011. Optimization and evaluation of wheat germ oil extracted by supercritical CO2. Grasas Aceites 62, 181–189. http://dx.doi.org/10.3989/gya.078710

Kongmany S, Matsuura H, Furuta M, Okuda S, Imamura K, Maeda Y. 2013. Plasma application for detoxification of Jatropha phorbol esters. J Phys: Conference Series, vol. 441 (pp. 012006): IOP Publishing.

Liu R, Jin Q, Huang J, Liu Y, Wang X, Mao W, Wang S. 2011. Photodegradation of Aflatoxin B1 in peanut oil. Eur. Food Res. Technol. 232, 843–849. http://dx.doi.org/10.1007/s00217-011-1452-6

Makkar HP, Becker K. 2010. Are Jatropha curcas phorbol esters degraded by rumen microbes? J. Sci. Food Agri. 90, 1562– 1565. http://dx.doi.org/10.1002/jsfa.3955

Meher L, Churamani C, Arif M, Ahmed Z, Naik S. 2013. Jatropha curcas as a renewable source for bio-fuels—A review. Renew Sust. Energ. Rev. 26, 397–407. http://dx.doi.org/10.1016/j.rser.2013.05.065

Mir NA, Khan A, Muneer M, Vijayalakhsmi S. 2013. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: Adsorption, kinetics, product analysis and toxicity assessment. Sci. Total Environ. 458, 388–398. http://dx.doi.org/10.1016/j.scitotenv.2013.04.041

Martínez-Herrera J, Siddhuraju P, Francis G, Dávila-Ortíz G, Becker K. 2006. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem. 96, 80–89. http://dx.doi.org/10.1016/j.foodchem.2005.01.059

Pradhan S, Naik S, Khan M, Sahoo P. 2012. Experimental assessment of toxic phytochemicals in Jatropha curcas: oil, cake, bio-diesel and glycerol. J. Sci. Food Agri. 92, 511–519. http://dx.doi.org/10.1002/jsfa.4599

Roach JS, Devappa RK, Makkar HP, Becker K. 2012. Isolation, stability and bioactivity of Jatropha curcas phorbol esters. Fitoterapia 83, 586–592. http://dx.doi.org/10.1016/j.fitote.2012.01.001

Salimon J, Ahmed WA. 2012. Physicochemical Characteristics of Tropical Jatropha curcas Seed Oil. Sains Malays. 41, 313–317.

Wang C, Xia W, Xu Y, Jang Q, Yu P. 2013. Physicochemical Properties, Volatile Compounds and Phospholipid Classes of Silver Carp Brain Lipids. J. Am. Oil Chem. Soc. 90, 1301–1309. http://dx.doi.org/10.1007/s11746-013-2280-6

Xiao jh, Niu LY. Jatropha curcas seed oil detoxification method. Patent no.CN103333742A.

Ye M, Li C, Francis G, Makkar HPS. 2009. Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agroforestry Syst. 76, 487–497. http://dx.doi.org/10.1007/s10457-009-9226-x

Yunping B, Ngoc Ha BT, Eunice Y, Loong Chueng L, Yan H. 2012. Light induced degradation of phorbol esters. Ecotox Environ. Safety 84, 268–273. http://dx.doi.org/10.1016/j.ecoenv.2012.07.021




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es