Grasas y Aceites, Vol 66, No 1 (2015)

The importance of pretreatment tailoring on the performance of ultrafiltration membranes to treat two-phase olive mill wastewater


https://doi.org/10.3989/gya.0829142

J. M. Ochando Pulido
Chemical Engineering Department, University of Granada, Spain

Abstract


In this work, the performance of an ultrafiltration (UF) membrane in the treatment of the effluents by-produced by olive mills is addressed by applying different pretreatments on the raw effluents. By conducting a photo-catalytic process (UV/TiO2 PC) after pH-temperature flocculation (pH-T F) higher threshold flux values were observed for all feed stocks than by applying solely the pH-T F process, with an 18.8–34.2% increment. In addition, the performance of the UF membrane was also improved in terms of rejection efficiency, such that higher rejection values were yielded by the membrane for the organic pollutants (RCOD) by 48.5 vs. 39.9% and 53.4 vs. 42.0%. The UF membrane performance was also improved in terms of the volume feed recovery factor (VFR), achieving up to 88.2 vs. 87.2% and 90.7 vs. 89.3%. Results in the same line were also observed when the highly polluted olives oil washing wastewater raw stream was previously mixed with the effluent stream coming from the washing of the olives. This permits the UF to permeate, achieving the standard limits to reuse the purified effluent for irrigation purposes (COD values below 1000 mg·L−1), which makes the treatment process cost-effective and results in making the olive oil production process environmentally friendly.

Keywords


Olive mill wastewater; Pretreatment tailoring; Threshold flux; Ultrafiltration; Wastewater treatment

Full Text:


HTML PDF XML

References


Akdemir EO, Ozer A. 2009. Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 249, 660–666. http://dx.doi.org/10.1016/j.desal.2008.06.035

Aktas ES, Imre S, Esroy L. 2001. Characterization and lime treatment of olive mill wastewater. Water Res. 35, 2336–2340. http://dx.doi.org/10.1016/S0043-1354(00)00490-5

Al-Malah K, Azzam MOJ, Abu-Lail NI. 2000. Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep. Purif. Technol. 20, 225–234. http://dx.doi.org/10.1016/S1383-5866(00)00114-3

Ammary BY. 2005. Treatment of olive mill wastewater using an anaerobic sequencing batch reactor. Desalination 177, 157–165. http://dx.doi.org/10.1016/j.desal.2004.12.006

Annesini M, Gironi F. 1991. Olive oil mill effluent: ageing effects on evaporation behavior. Water Research 25, 1157–1960. http://dx.doi.org/10.1016/0043-1354(91)90210-H

Asfi M, Ouzounidou G, Panajiotidis S, Therios I, Moustakas M. 2012. Toxicity effects of olive-mill wastewater on growth, photosynthesis and pollen morphology of spinach plants. Ecotox. Environ. Safe. 80, 69–75. http://dx.doi.org/10.1016/j.ecoenv.2012.02.030

Bacchin P, Aimar P, Sanchez V. 1996. Influence of surface interaction on transfer during colloid ultrafiltration. J. Membr. Sci. 115, 49–63. http://dx.doi.org/10.1016/0376-7388(95)00279-0

Beltrán J, Torregrosa J, García J, Domínguez JR. 2000. Ozone treatment of olive mill wastewater. Grasas y Aceites 51, 32–46.

Borja R, Raposo F, Rincón B. 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Aceites 57, 32–46. http://dx.doi.org/10.3989/gya.2006.v57.i1.20

Bouranis DL, Vlyssides AG, Drossopoulos JB, Karvouni G. 1995. Some characteristics of a new organic soil conditioner from the co-composting of olive oil processing wastewater and solid residue. Commun. Soil Sci. Plant Anal. 26, 2461–2472. http://dx.doi.org/10.1080/00103629509369460

Cegarra J, Paredes C, Roig A, Bernal MP, García D. 1996. Use of olive mill wastewater compost for crop production. Int. Biodet. Biodegrad. 38, 193–203. http://dx.doi.org/10.1016/S0964-8305(96)00051-0

Danellakis D, Ntaikou I, Kornaros M, Dailianis S. 2011. Olive oil mill wastewater toxicity in the marine environment: Alterations of stress indices in tissues of mussel Mytilus galloprovincialis. Aquat. Toxicol. 101, 358–366. http://dx.doi.org/10.1016/j.aquatox.2010.11.015

Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Sacchi A. 2007. Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater. Grasas Aceites 58, 32–46. http://dx.doi.org/10.3989/gya.2007.v58.i1.6

Espinasse B, Bacchin P, Aimar P. 2002. On an experimental method to measure critical flux in ultrafiltration, Desalination 146, 91–96. http://dx.doi.org/10.1016/S0011-9164(02)00495-2

Field, RW, Pearce, GK. 2011. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci. 164, 38–44. http://dx.doi.org/10.1016/j.cis.2010.12.008

Fountoulakis MS, Dokianakis SN, Kornaros ME, Aggelis GG, Lyberatos G. 2002. Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res. 36, 4735–4744. http://dx.doi.org/10.1016/S0043-1354(02)00184-7

Garrido Hoyos SE, Martínez Nieto L, Camacho Rubio F, Ramos Cormenzana A. 2002. Kinetics of aerobic treatment of olive-mill wastewater (OMW) with Aspergillus terreus. Process Biochem. 37, 1169–1176. http://dx.doi.org/10.1016/S0032-9592(01)00332-6

Grafias P, Xekoukoulotakis NP, Mantzavinos D, Diamadopoulos E. 2010. Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process. Water Research 44, 2773–2780. http://dx.doi.org/10.1016/j.watres.2010.02.015

Greenberg AE, Clesceri LS, Eaton AD. 1992. Standard Methods for the Examination of Water and Wastewater, APHA/ AWWA/WEF, 16th ed., Washington DC. Cabs.

Hodaifa G, Eugenia-Sánchez M, Sánchez S. 2008. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour. Technol. 99, 1111–1117. http://dx.doi.org/10.1016/j.biortech.2007.02.020

Hodaifa G, Ochando Pulido JM, Ben-Driss-Alami S, Rodriguez-Vives S, Martinez-Ferez A. 2013. Kinetic and thermodynamic parameters of iron adsorption onto olive stones. Ind. Crops Prod. 49, 526–534. http://dx.doi.org/10.1016/j.indcrop.2013.05.039

Inan H, Dimoglo A, S¸ims¸ek H, Karpuzcu M. 2004. Olive oil mill wastewater treatment by means of electro-coagulation. Sep. Purif. Technol. 36, 23–31. http://dx.doi.org/10.1016/S1383-5866(03)00148-5

Karaouzas I, Skoulikidis NT, Giannakou U, Albanis TA. 2011. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status. Water Res. 45, 6334–6346. http://dx.doi.org/10.1016/j.watres.2011.09.014

Lafi WK, Shannak B, Al-Shannag M, Al-Anber Z, Al-Hasan M. 2009. Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Separ. Purif. Technol. 70, 141–146. http://dx.doi.org/10.1016/j.seppur.2009.09.008

Martínez Nieto L, Ben Driss Alami S, Hodaifa G, Faur C, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2010. Adsorption of iron on crude olive stones. Ind. Crop. Prod. 32, 467–471. http://dx.doi.org/10.1016/j.indcrop.2010.06.017

Martínez Nieto L, Hodaifa G, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2011a. Flocculation-sedimentation combined with chemical oxidation process. Clean - Soil, air, water 39, 949–955. http://dx.doi.org/10.1002/clen.201000594

Martínez Nieto L, Hodaifa G, Rodríguez Vives S, Giménez Casares JA, Ochando J. 2011b. Degradation of organic matter in olive oil mill wastewater through homogeneous Fenton-like reaction. Chem. Eng. J. 173, 503–510. http://dx.doi.org/10.1016/j.cej.2011.08.022

Marques IP. 2001. Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137, 233–239. http://dx.doi.org/10.1016/S0011-9164(01)00224-7

Ntougias S, Gaitis F, Katsaris P, Skoulika S, Iliopoulos N, Zervakis GI. 2013. The effects of olives harvest period and production year on olive mill wastewater properties- Evaluation of Pleurotus strains as bioindicators of the effluent's toxicity. Chemosphere 92, 399–405. http://dx.doi.org/10.1016/j.chemosphere.2013.01.033

Ochando Pulido JM, Rodriguez-Vives S, Martinez-Ferez A. 2012a. The effect of permeate recirculation on the depuration of pretreated olive mill wastewater through reverse osmosis membranes. Desalination 286, 145–154. http://dx.doi.org/10.1016/j.desal.2011.10.041

Ochando Pulido JM, Hodaifa G, Rodriguez-Vives S, Martinez-Ferez A. 2012b. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater. Water Res. 46, 4621–4632. http://dx.doi.org/10.1016/j.watres.2012.06.026

Ochando Pulido JM, Hodaifa G, Victor-Ortega MD, Rodriguez-Vives S, Martinez-Ferez A, 2013a. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment, J. Hazard. Mater. 263, 158–67. http://dx.doi.org/10.1016/j.jhazmat.2013.07.015

Ochando Pulido JM, Hodaifa G, Victor-Ortega MD, Rodriguez-Vives S, Martinez-Ferez A, 2013b. Effective treatment of olive mill effluents from two-phase and three-phase extraction processes by batch membranes in series operation upon threshold conditions. J. Hazard. Mater. 263, 168–176. http://dx.doi.org/10.1016/j.jhazmat.2013.03.041

Ochando Pulido JM, Hodaifa G, Victor-Ortega MD, Martinez-Ferez A, 2014. A novel photocatalyst with ferromagnetic core used for the treatment of olive oil mill effluents from two-phase production process. The Scientific World Journal, 2014.

Papadimitriou EK, Chatjipavlidis I, Balis C. 1997. Application of composting to olive mill wastewater treatment. Environ. Technol. 18, 101–107. http://dx.doi.org/10.1080/09593331808616517

Paraskeva P, Diamadopoulos E. 2006. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 81, 475–485. http://dx.doi.org/10.1002/jctb.1553

Rizzo L, Lofrano G, Grassi M, Belgiorno V. 2008. Pretreatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Separ. Purif. Technol. 63, 648–653. http://dx.doi.org/10.1016/j.seppur.2008.07.003

Sacco O, Stoller M, Vaiano V, Ciambelli P, Chianese A, Sannino D. 2012. Photocatalytic degradation of organic dyes under visible light on n-doped photocatalysts. Int. J. Photoenergy, 2012. http://dx.doi.org/10.1155/2012/626759

Sarika R, Kalogerakis N, Mantzavinos D. 2005. Treatment of olive mill effluents. Part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ. Int. 31, 297–304. http://dx.doi.org/10.1016/j.envint.2004.10.006

Stoller M. 2008. Technical optimization of a dual ultrafiltration and nanofiltration pilot plant in batch operation by means of the critical flux theory: a case study. Chem. Eng. Process. 47, 1165–1170. http://dx.doi.org/10.1016/j.cep.2007.07.012

Stoller M. 2009. On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction. Desalination 240, 209–217. http://dx.doi.org/10.1016/j.desal.2007.12.042

Stoller M. 2011. Effective fouling inhibition by critical flux based optimization methods on a NF membrane module for olive mill wastewater treatment. Chem. Eng. J. 168, 1140–1148. http://dx.doi.org/10.1016/j.cej.2011.01.098

Stoller M, Bravi M. 2010. Critical flux analyses on differently pretreated olive vegetation wastewater streams: some case studies. Desalination 250, 578–582. http://dx.doi.org/10.1016/j.desal.2009.09.027

Stoller M, Ochando Pulido JM. 2012. Going from a critical flux concept to a threshold flux concept on membrane processes treating olive mill wastewater streams. Procedia Eng. 44, 607–608. http://dx.doi.org/10.1016/j.proeng.2012.08.500

Tezcan Ü, Ugur S, Koparal AS, Ögutveren ÜB. 2006. Electrocoagulation of olive mill wastewaters. Sep. Purif. Technol. 52, 136–141. http://dx.doi.org/10.1016/j.seppur.2006.03.029

Turano E, Curcio S, De Paola M G, Calabrò V, Iorio G. 2002. An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater, J. Membr. Sci. 206, 519–531. http://dx.doi.org/10.1016/S0376-7388(02)00369-1




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es