Grasas y Aceites, Vol 66, No 4 (2015)

Minor components of pomace olive oil enhance VLDL-receptor expression in macrophages when treated with postprandial triglyceride-rich lipoproteins

R. Cabello-Moruno
Nutrition and Lipid Metabolism. Instituto de la Grasa (CSIC), Spain

L. Sinausia
Nutrition and Lipid Metabolism. Instituto de la Grasa (CSIC), Spain

E. Montero
Emergencies Services. General Hospital. HHUU Virgen del Rocío, Spain

K. M. Botham
Department of Comparative Biomedical Sciences, The Royal Veterinary College, United Kingdom

M. Avella
Department of Comparative Biomedical Sciences, The Royal Veterinary College, United Kingdom

J. S. Perona
Nutrition and Lipid Metabolism. Instituto de la Grasa (CSIC), Spain


Pomace olive oil (POO) is rich in minor components, which can modulate the composition of postprandial triglyceride-rich lipoproteins (TRL) and their uptake by macrophages. The aim of the present study was to investigate the effects of postprandial TRL obtained after the ingestion of meals containing POO or refined olive oil (ROO) on foam cell formation, one of the initial steps of atherogenesis. Meals were administered to 9 healthy men and TRL were isolated from serum 4h after the intake. POO intake led to TRL with lower triglyceride/apo B48 and triglyceride/apo B100 ratios compared to ROO. Upon incubation of THP-1 macrophages with the TRL, an increase in the intracellular triglyceride content and foam cell formation was observed. Compared to ROO-TRL, the only receptor involved in lipoprotein uptake that showed changes in the mRNA expression after treatment with POO-TRL was the VLDL-receptor (VLDLr). In conclusion, the intake of POO modified the composition of human TRL, which increased the VLDLr gene expression in macrophages. However, the changes were not sufficient to enhance foam cell formation.


Macrophages; Pomace olive oil; Postprandial; Triglycerides; VLDL-receptor

Full Text:



Abia R, Pacheco YM, Perona JS, Montero E, Muriana FJ, Ruiz-Gutiérrez V. 2001. The metabolic availability of dietary triacylglycerols from two high oleic oils during the postprandial period does not depend on the amount of oleic acid ingested by healthy men. J. Nutr. 131, 59–65. PMid:11208939

Awad AB, Begdache LA, Fink CS. 2000. Effect of sterols and fatty acids on growth and triglyceride accumulation in 3T3-L1 cells. J. Nutr. Biochem. 11, 153–158.

Cabello-Moruno R, Perona JS, Osada J, Garcia M, Ruiz-Gutierrez V. 2007. Modifications in postprandial triglyceride-rich lipoprotein composition and size after the intake of pomace olive oil. J. Am. Coll. Nutr. 26, 24–31. PMid:17353580

Cabello-Moruno, R, Sinausia, L, Botham, KM, Montero, E, Avella, M, Perona JS. 2014. Postprandial phase time influences uptake of triacylglycerol from postprandial triacylglycerol- rich lipoproteins in THP-1 macrophages. Br. J. Nutr. 23, 1–9.

Cárdeno A, Sánchez-Hidalgo M, Cortes-Delgado A, Alarcón de la Lastra C. 2013. Mechanisms involved in the antiproliferative and proapoptotic effects of unsaponifiable fraction of extra virgin olive oil on HT-29 cancer cells. Nutr. Cancer 65, 908–918. PMid:23909736

Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Borén J, Catapano AL, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Nordestgaard BG, Ray KK, Reiner Z, Taskinen MR, Tokgözoglu L, Tybjærg-Hansen A, Watts GF; European Atherosclerosis Society Consensus Panel. 2011. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur. Heart J. 32, 1345–1361. PMid:21531743 PMCid:PMC3105250

Dushkin MI, Khoshchenko OM, Posokhova EN, Schvarts Ysh. 2007. Agonists of PPAR-alpha, PPAR-gamma, and RXR inhibit the formation of foam cells from macrophages in mice with inflammation. Bull Exp. Biol. Med. 144, 713–716. PMid:18683504 Eck MV, Oost J, Goudriaan JR, Hoekstra M, Hildebrand RB, Bos IS, van Dijk KW, Van Berkel TJ. 2005. Role of the macrophage very-low-density lipoprotein receptor in atherosclerotic lesion development. Atherosclerosis 183, 230–237. PMid:15979629

Elsegood CL, Pal S, Roach PD, Mamo JC. 2001. Binding and uptake of chylomicron remnants by primary and THP-1 human monocyte-derived macrophages: determination of binding proteins. Clin Sci (Lond). 101, 111–119.

Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509. PMid:13428781

Goudriaan JR, Espirito Santo SM, Voshol PJ, Teusink B, van Dijk KW, van Vlijmen BJ, Romijn JA, Havekes LM, Rensen PC. 2004. The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis. J. Lipid Res. 45, 1475–1481. PMid:15145981

Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Ochoa-Herrera J, Perez-Lopez P, Pulido-Moran M, Ramirez- Tortosa MC. 2012. Squalene ameliorates atherosclerotic lesions through the reduction of CD36 scavenger receptor expression in macrophages. Mol. Nutr. Food Res. 56, 733–740. PMid:22648620

Jackson KG, Poppitt SD, Minihane AM. 2012. Postprandial lipemia and cardiovascular disease risk: Interrelationships between dietary, physiological and genetic determinants. Atherosclerosis 220, 22–33. PMid:21955695

Jackson KG, Robertson MD, Fielding BA, Frayn KN, Williams CM. 2002. Measurement of apolipoprotein B-48 in the Svedberg flotation rate (S(f))>400, S(f) 60–400 and S(f) 20–60 lipoprotein fractions reveals novel findings with respect to the effects of dietary fatty acids on triacylglycerol-rich lipoproteins in postmenopausal women. Clin. Sci. (Lond) 103, 227–237.

Karpe F, Hamsten A. 1994. Determination of apolipoproteins B-48 and B-100 in triglyceride-rich lipoproteins by analytical SDS-PAGE. J. Lipid Res. 35, 1311–1317. PMid:7964192

Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. PMid:5432063

Mamo JC, Wheeler JR. 1994. Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low-density lipoprotein, high-density lipoprotein, and albumin. Coron. Artery Dis. 5, 695–705. PMid:8000623

Moore EH, Bejta F, Avella M, Suckling KE, Botham KM. 2005. Efflux of lipid from macrophages after induction of lipid accumulation by chylomicron remnants. Biochim Biophys Acta 1735, 20–29. PMid:15951238

Napolitano M, Avella M, Botham KM, Bravo E. 2003. Chylomicron remnant induction of lipid accumulation in J774 macrophages is associated with up-regulation of triacylglycerol synthesis which is not dependent on oxidation of the particles. Biochim. Biophys. Acta 1631, 255–264.

Noa M, de la Rosa MC, Más R. 1996. Effect of policosanol on foam-cell formation in carrageenan-induced granulomas in rats. J. Pharm. Pharmacol. 48, 306–309. PMid:8737059

Palmer AM, Nova E, Anil E, Jackson K, Bateman P, Wolstencroft E, Williams CM, Yaqoob P. 2005. Differential uptake of subfractions of triglyceride-rich lipoproteins by THP-1 macrophages. Atherosclerosis 180, 233–244. PMid:15910848

Pérez-Martínez P, Ordovas JM, Garcia-Ríos A, Delgado-Lista J, Delgado-Casado N, Cruz-Teno C, Camargo A, Yubero-Serrano EM, Rodriguez F, Perez-Jimenez F, Lopez-Miranda J. 2011. Consumption of diets with different type of fat influences triacylglycerol-rich lipoproteins particle number and size during the postprandial state. Nutr. Metab. Cardiovasc. Dis. 21, 39–45. PMid:19819118

Perona JS, Avella M, Botham KM, Ruiz-Gutiérrez V. 2008. Differential modulation of hepatic very low-density lipoprotein secretion by triacylglycerol-rich lipoproteins derived from different oleic-acid rich dietary oils. Br. J. Nutr. 99, 29–36. PMid:17651518

Perona JS, Cabello-Moruno R, Ruiz-Gutierrez V. 2006. The role of virgin olive oil components in the modulation of endothelial function. J. Nutr. Biochem. 17, 429–445. PMid:16481154

Perona JS, Ruiz-Gutierrez V. 2004. Quantification of major lipid classes in human triacylglycerol-rich lipoproteins by high-performance liquid chromatography with evaporative light-scattering detection. J. Sep. Sci. 27, 653–659. PMid:15387459

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45. PMid:11328886 PMCid:PMC55695

Plat J, Brufau G, Dallinga-Thie GM, Dasselaar M, Mensink RP. 2009. A plant stanol yogurt drink alone or combined with a low-dose statin lowers serum triacylglycerol and non-HDL cholesterol in metabolic syndrome patients. J. Nutr. 139, 1143–1149. PMid:19403719

Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, Miyamori I, Yamamoto TT. 2004. The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J. Atheroscler. Thromb. 11, 200–208. PMid:15356379

Vejux A, Montange T, Martine L, Zarrouk A, Riedinger JM, Lizard G. 2012. Absence of oxysterol-like side effects in human monocytic cells treated with phytosterols and oxyphytosterols. J. Agric. Food Chem. 60, 4060–4066. PMid:22490085

Wallert M, Mosig S, Rennert K, Funke H, Ristow M, Pellegrino RM, Cruciani G, Galli F, Lorkowski S, Birringer M. 2014. Long-chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell formation in vitro. Free Radic Biol Med. 68, 43–51. PMid:24296243

Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support