Amazonian Buriti oil: chemical characterization and antioxidant potential

Authors

  • P. Speranza Faculty of Food Engineering, Department of Food Science, University of Campinas - Faculty of Food Engineering, Department of Food and Nutrition, University of Campinas
  • A. de Oliveira Falcão Faculty of Food Engineering, Department of Food and Nutrition, University of Campinas
  • J. Alves Macedo Faculty of Food Engineering, Department of Food and Nutrition, University of Campinas
  • L. H.M. da Silva Faculty of Food Engineering, Technology Institute, University of Para
  • A. M. da C. Rodrigues Faculty of Food Engineering, Technology Institute, University of Para
  • G. Alves Macedo Faculty of Food Engineering, Department of Food Science, University of Campinas - Faculty of Food Engineering, Department of Food and Nutrition, University of Campinas

DOI:

https://doi.org/10.3989/gya.0622152

Keywords:

Fatty acid, Minor compound, Radical scavenging activity, Regio-specific distribution, Triacylglycerol

Abstract


Buriti oil is an example of an Amazonian palm oil of economic importance. The local population uses this oil for the prevention and treatment of different diseases; however, there are few studies in the literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil were determined. The predominant fatty acid was oleic acid (65.6%) and the main triacylglycerol classes were tri-unsaturated (50.0%) and di-unsaturated-mono-saturated (39.3%) triacylglycerols. The positional distribution of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total content of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol (45%). Total phenolic (107.0 mg gallic acid equivalent·g−1 oil) and β-carotene (781.6 mg·kg−1) were particularly high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) was obtained at an oil concentration of 50 mg·mL−1 (73.15%). The antioxidant activity evaluated by the Oxygen Radical Absorbance Capacity (ORAC) was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes.

Downloads

Download data is not yet available.

References

Albuquerque MLS, Guedes I, Alcantara Jr. P, Moreira SGC, Barbosa Neto NM, Correa DS, Zilio SC. 2005. Characterization of Buriti (Mauritia flexuosa L.) Oil by Absorption and Emission Spectroscopies. J. Braz. Chem. Soc. 16, 1113–1117. http://dx.doi.org/10.1590/S0103-50532005000700004

Antoniosi Filho NR, Mendes OL, Lan.as FM. 1995. Computer prediction of triacylglycerol composition of vegetable oils by HRGC. Chromatographia 40, 557–562. http://dx.doi.org/10.1007/BF02290268

AOCS. 2009. Official Methods and Recommended Practices of the American Oil Chemists' Society. American Oil Society (6th ed.). Champaign.

Aquino JS, Pessoa DCNP, Ara.jo KLGV, Epaminondas PS, Schuler ARP, Souza AG. 2012. Stamford TLM. Refining of Buriti oil (Mauritia flexuosa) originated from the Brazilian cerrado: physocochemical, thermal-oxidative and nutritional implications. J. Braz. Chem. Soc. 23, 212–219.

Basso RC, Almeida AJ, Batista EAC. 2012. Liquid-liquid equilibrium of pseudoternary systems containing glycerol+ ethanol+ethylic biodiesel from crambe oil (Crambe abyssinica) at T/K = (298.2, 318.2, 338.2) and thermodynamic modeling. Fluid Phase Equilibr. 333, 55–62. http://dx.doi.org/10.1016/j.fluid.2012.07.018

Bataglion GA, Silva FMA, Santos JM, Santos FN, Barcia MT, Louren.o CC, Salvador MJ, Godoy HT, Eberlin MN, Koolen HHF. 2014. Comprehensive characterization of lipids from Amazonian vegetable oils by mass spectrometry techniques. Food Res. Int. 64, 472–481. http://dx.doi.org/10.1016/j.foodres.2014.07.011

Bataglion GA, Silva FMA, Santos JM, Barcia MT, Godoy HT, Eberlin MN, Koolen HHF. 2015. Integrative approach using GC-MS and easy ambient sonic-spray ionization mass spectrometry (EASI-MS) for comprehensive lipid characterization of Buriti (Mauritia flexuosa) oil. J. Braz. Chem. Soc. 26, 171–177.

Benad. AJS. 2013. Red palm oil carotenoids: Potential role in disease prevention, in Watson RR and Preedy VR (Eds.) Bioactive Food as Dietary Interventions for Cardiovacular Disease. Ed. Elsevier, 345–353.

Bessler TR, Orthoefer FT. 1983. Providing lubricity in food fat systems. J. Am. Oil Chem. Soc. 60, 1765–1768. http://dx.doi.org/10.1007/BF02680351

Brockerhoff, H. 1971. Stereospecific analysis of triglycerides.v Lipids, 942–956. http://dx.doi.org/10.1007/BF02531179 PMid:4950467

Buchgraber M, Ulberth F, Emons H, Anklan E. 2004. Triacylglycerol profiling by using chromatographic techniques. Eur J Lipid Sci Technol 106, 621–648. http://dx.doi.org/10.1002/ejlt.200400986

Capurso C, Massaro M, Scoditti E, Vendemiale G, Capurso A. 2014. Vascular effects of the mediterranean diet Part I: Antihypertensive and anti-thrombotic effects. Curr. Vasc. Pharmacol. 118–126. http://dx.doi.org/10.1016/j.vph.2014.10.001 PMid:25446165

Chen B, McClements DJ, Decker EA. 2011. Minor components in food oils: A critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions. Crit. Rev. Food Sci. Nutr. 51, 901–916. http://dx.doi.org/10.1080/10408398.2011.606379 PMid:21955091

Criado M, Hernández-Mart.n E, L.pez-Hern.ndez A, Otero C. 2008. Enzymatic interesterification of olive oil with fully hydrogenated palm oil: Characterization of fats. Eur. J. Lipid Sci. Technol. 110, 714–724. http://dx.doi.org/10.1002/ejlt.200800017

D`Agostini, D, Gioielli LA. 2002. Stereospecific distribution of structured lipids obtained from palm oil, palm kernel oil, and medium chain triacylglycerols. Rev. Bras. Cienc. Farm. 38, 345–354.

Davies BH. 1976. Carotenoids, in Goodwin TW (Ed.) Chemistry and biochemistry of plant pigments. Academic, London, p.38.

Dhavamani S, Rao YPC, Lokesh BR. 2014. Total antioxidant activity of selected vegetable oils and their influence on total antioxidant values in vivo: A photochemiluminescence based analysis. Food Chem. 164, 551–555. http://dx.doi.org/10.1016/j.foodchem.2014.05.064 PMid:24996369

Dufoss. L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA. 2005. Microorganisms and microalgae as source of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci. Tech. 16, 389–406. http://dx.doi.org/10.1016/j.tifs.2005.02.006

Espín JC, Soles-Rivas C, Wichers HJ. 2000. Characterization of the Total Free Radical Scavenger Capacity of Vegetable Oils and Oil Fractions Using 2,2-Diphenyl-1-picrylhydrazyl Radical. J. Agric. Food Chem. 48, 648-656. http://dx.doi.org/10.1021/jf9908188 PMid:10725129

Ferreira BS, Almeida CG, Faza LP, Almeida A, Diniz CG, Silva VL, Grazul RM, Hyaric ML. 2011. Comparative Properties of Amazonian Oils Obtained by Different Extraction Methods. Molecules, 16, 5875–5885. http://dx.doi.org/10.3390/molecules16075875 PMid:21750480

Ghaffari T, Nouri M, Irannejad E, Rashidi MR. 2011. Effect of vitamin E and selenium supplement on paraoxonase 1-activity, oxidized low density lipoprotein and antioxidant defense in diabetic rats. BioImpacts 1, 121–128. PMid:23678416 PMCid:PMC3648954

Ghazani SM, Marangoni AG. 2013. Minor Components in Canola Oil and Effects of Refining on These Constituents: A Review. J. Am. Oil Chem. Soc. 90, 923–932. http://dx.doi.org/10.1007/s11746-013-2254-8

Guedes AMN, Ming CC, Ribeiro APB, Silva RC, Gioielli LA, Gon.alves LAG. 2014. Physicochemical Properties of Interesterified Blends of Fully Hydrogenated Crambe abyssinica Oil and Soybean Oil. J. Am. Oil Chem. Soc. 91, 111–123. http://dx.doi.org/10.1007/s11746-013-2360-7

Gunstone FD, Harwood JL. 2007. Occurrence and characterization of oils and fats, in Gunstone FD, Harwood JL, Dijkstra AJ (Eds). The lipid handbook. 3rd edn. Taylor and Francis, pp. 703–782.

Haeiwa H, Fujita T, Yasukazu SY, Miwa N. 2014. Oleic acid promotes adaptability against oxidative stress in 3T3-L1 cells through lipohormesis. Mol. Cell Biochem. 386, 73–83. http://dx.doi.org/10.1007/s11010-013-1846-9 PMid:24234346

Halliwell B. 1994. Free radicals and antioxidants: a personal view. Nutr. Res. Rev. 52, 253–265. http://dx.doi.org/10.1111/j.1753-4887.1994.tb01453.x

Hartman L, Lago RCA. 1973. Rapid preparation of fatty acid methyl esters from lipids. Laboratory Practice 22, 475–494. PMid:4727126

Hau SN, Adolfsson O, Lee C-K, Ordovas J, Meydani SN. 2006. Age- and vitamin E-induced changes in gene expression profiles of T cells. J. Immunol. 177, 6052–6061. http://dx.doi.org/10.4049/jimmunol.177.9.6052

Hernández PBN, Fregapane G, Moya MDS. 2009. Bioactive compounds, volatiles and antioxidant activity of virgin seje oils (Jessenia Bataua) from the Amazona. J Food Lipids 16, 629–644. http://dx.doi.org/10.1111/j.1745-4522.2009.01171.x

Hrncirik K, Fritsche S. 2004. Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur. J. Lipid Sci. Technol. 8, 540–549. http://dx.doi.org/10.1002/ejlt.200400942

Kolakowska A, Sikorski ZE. 2002. The role of lipids in food quality. In: Kolakowska A, Sikorski ZE (ed). Chemical and Functional Properties of Food Lipids. CRC Press, Boca Raton, Florida. http://dx.doi.org/10.1201/9781420031997.ch1 PMid:11890054

Lesjak MM, Beara IN, Orcic DZ, Petar KN, Simin ND, Emilija SD, Makinen MA, Kamal-Eldin, A, Lampi A-M, Hopia A. 2001. ?- ?- ?- ?-Tocopherols as inhibitors of isomerization and decomposition of cis, trans methyl linoleate hydroperoxides. Eur. J. Lipid Sci. Technol. 103, 286–291. http://dx.doi.org/10.1002/1438-9312(200105)103:5<286::AID-EJLT286>3.0.CO;2-Q

Mayne ST. 1996. Beta-carotene, carotenoids and disease prevention in humans. Faseb J. 10, 690–701. PMid:8635686

Makinen MA, Kamal-Eldin A, Lampi A-M. 2001. Hopia A. ?- ?- ?- ?-Tocopherols as inhibitors of isomerization and decomposition of cis, trans methyl linoleate hydroperoxides. Eur. J. Lipid Sci. Technol. 103, 286–291. http://dx.doi.org/10.1002/1438-9312(200105)103:5<286::AID-EJLT286>3.3.CO;2-H

Marineli RS, Moraes EA, Lenquiste SA, Godoy AT, Eberlin MN, Mar.stica Jr. MR. 2014. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT- Food Sci. Technol. 59, 1304–1310.

Matthus B. 2002. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agr. Food Chem. 50, 3444–52. http://dx.doi.org/10.1021/jf011440s

Miraliakbari H, Shahidi F. 2008. Antioxidant activity of minor components of tree nut oils. Food Chem. 111, 421–427. http://dx.doi.org/10.1016/j.foodchem.2008.04.008 PMid:26047445

Muller L, Frohlich K, Bohm V. 2011. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (?TEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 129, 139–148. http://dx.doi.org/10.1016/j.foodchem.2011.04.045

O`Brien RD. 2009. Fats and Oils: formulating and processing for applications. 3rd edn. CRC Press, United States of America.

Pandey KB, Rizvi SI. 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2, 270–278. http://dx.doi.org/10.4161/oxim.2.5.9498 PMid:20716914 PMCid:PMC2835915

Pardauil JJR, Souza LKC, Molfetta FA, Zamian JR, Rocha Filho GN, Costa CEF. 2011. Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresource Technol. 102, 5873–5877. http://dx.doi.org/10.1016/j.biortech.2011.02.022 PMid:21411317

Pesce C, Rocha ES, Filho NR, Zoghbi MGB. 2009. Oleaginosas da Amazônia. 2nd edn. Museu Paraense Emilio Goeldi, Brazil.

Pina-Rodrigues AM, Akoh CC. 2010. Composition and oxidative stability of a structured lipid from Amaranth oil in a milk-based infant formula. J. Food Sci. 75, 140–146. http://dx.doi.org/10.1111/j.1750-3841.2009.01460.x PMid:20492217

Pokorny J, Park.nyiov. J. 2005. Lipids with antioxidant properties, in Akoh CC, Lai O-M (Ed). Healthful Lipids. AOCS Press, Champaingn, Illinois, chapter 13.

Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC (FL)) of plasma and other biological and food samples. J. Agric. Food Chem. 51, 3273–9. http://dx.doi.org/10.1021/jf0262256 PMid:12744654

Ramadan MF, Kinni SG, Rajanna LN, Seetharam YN, Seshagiri M, Morsel J-T. 2009. Fatty acids, bioactive lipids and radical scavenging activity of Celastrus paniculatus Willd. seed oil. Sci. Hortic. 123, 104–109. http://dx.doi.org/10.1016/j.scienta.2009.07.008

Ramadan MF, Kroh LW, Morsel JT. 2003. Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J. Agr. Food Chem. 51, 6961–6969. http://dx.doi.org/10.1021/jf0346713 PMid:14611155

Ramadan MF, Morsel JT. 2006. Screening of the antiradical action of vegetable oils. J. Food Compost. Anal. 19, 838–842. http://dx.doi.org/10.1016/j.jfca.2006.02.013

Reische DW, Lillard DA, Eitenmiller RR. 2002. Antioxidants, in Akoh CC, Min DB (Eds). Food Lipids. Marcel Dekker, New York, pp. 423–448. http://dx.doi.org/10.1201/9780203908815.ch15

Ribeiro BD, Barreto DW, Coelho MAZ. 2011. Technological aspects of ?-carotene production. Food Bioprocess Technol. 4, 693–701. http://dx.doi.org/10.1007/s11947-011-0545-3

Rodrigues JN, Gioielli LA. 2003. Chemical interesterification of milkfat and milkfat-corn oil blends. Food Res. Int. 36, 149–159. http://dx.doi.org/10.1016/S0963-9969(02)00130-8

Rodrigues AMC, Darnet S, Silva LHM. 2010. Fatty acid profile and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), Tucuma (Astrocaryum vulgare), Mari (Poroqueiba paraensis) and Inaja (Maximiliana maripa) fruits. J. Braz. Chem. Soc. 21, 2000–2004. http://dx.doi.org/10.1590/S0103-50532010001000028

Sales-Campos H, Souza PR, Peghini BC, Silva JS, Cardoso CR. 2013. An overview of the modulatory effects of oleic acid in health and disease. Mini-Rev. Med. Chem. 13, 201–210. http://dx.doi.org/10.2174/1389557511313020003

Santos MFG, Alves RE, Ruíz-Méndez MV. 2013a. Minor components in oils obtained from Amazonian palm fruits. Grasas Aceites, 64, 531–536. http://dx.doi.org/10.3989/gya.048913

Santos MFG, Alves RE, Ruíz-Méndez MV. 2013b. Major components in oils obtained from Amazonian palm fruit. Grasas Aceites, 64, 328–334. http://dx.doi.org/10.3989/gya.023513

Santos MFG, Alves RE, Roca M. 2015. Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas Aceites 66.

Saraiva SA, Cabral EC, Eberlin MN, Catharino RR. 2009. Amazonian vegetable oils and fats: fats typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-offlight (MALDI-TOF) mass spectrometry fingerprinting. J. Agr. Food Chem. 57, 4030–4034. http://dx.doi.org/10.1021/jf900043u PMid:19358529

Sies H, Stahl W. 1995. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 62, 1315S–1321S. PMid:7495226

Silva SM, Sampaio KA, Taham T, Rocco SA, Ceriani R, Meirelles AJA. 2009. Characterization of Oil Extracted from Buriti Fruit (Mauritia flexuosa) Grown in the Brazilian Amazon Region. J. Am. Oil Chem. Soc. 86, 611–616. http://dx.doi.org/10.1007/s11746-009-1400-9

Silva SM, Rocco SA, Sampaio KA, Taham T, Silva LHM, Ceriani R, Meirelles AJA. 2011. Validation of a method for simultaneous quantification of total carotenes and tocols in vegetable oils by HPLC. Food Chem. 129, 1874–1881. http://dx.doi.org/10.1016/j.foodchem.2011.05.137

Singh U, Devaraj S. 2007. Vitamin E: inflammation and atherosclerosis. Vitam. Horm. 76, 519–49. http://dx.doi.org/10.1016/S0083-6729(07)76020-X

Stahl W, Sies H. 2003. Antioxidant activity of carotenoids. Mol. aspects Med. 6, 345–351. http://dx.doi.org/10.1016/S0098-2997(03)00030-X

Stahl W, Ale-Agha N, Polidori MC. 2002. Non-antioxidant properties of carotenoids. Biol. Chem. 383, 553–558. http://dx.doi.org/10.1515/BC.2002.056 PMid:12033443

Tuberoso CIG, Kowalczyk A, Sarritzu E, Cabras P. 2007. Determination of antioxidants compounds and antioxidant activity in commercial oilseeds for food use. Food Chem. 103, 1494–1501. http://dx.doi.org/10.1016/j.foodchem.2006.08.014

Valavanidis A, Nisiotou C, Papageorgiou Y, Kremli I, Satravelas N, Zinieris N, Zygalaki H. 2004. Comparison of the radical scavenging potential of polar and lipidic fractions of olive oil and other vegetable oils under normal conditions and after thermal treatment. J. Agric. Food Chem. 52, 2358–2365. http://dx.doi.org/10.1021/jf030491h PMid:15080646

Vlahov G. 1998. Regiospecific analysis of natural mixtures of triglycerides using quantitative13C nuclear magnetic resonance of acyl chain carbonyl carbons. Magn. Reson. Chem. 36, 359–362. http://dx.doi.org/10.1002/(SICI)1097-458X(199805)36:5<359::AID-OMR274>3.0.CO;2-Z

Vorarat S, Managit C, Iamthanakul L, Soparat W, Kamkaen N. 2010. Examination of antioxidant activity and development of rice bran oil and gamma-oryzanol microemulsion. J. Health Res. 24, 67–72.

Wagner K-H, Kamal-Eldinb A, Elmadfa I. 2004. Gamma-Tocopherol- An underestimated vitamin? Ann. Nutr. Metab. 48, 169–188. http://dx.doi.org/10.1159/000079555 PMid:15256801

Zanatta CF, Mitjans M, Urgatondo V, Rocha-Filho PA, Vinardell MP. 2010. Photoprotective potential of emulsions formulated with buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines. Food Chem. Toxicol. 48, 70–75. http://dx.doi.org/10.1016/j.fct.2009.09.017 PMid:19766688

Zanatta CF, Ugartondo V, Mitjans M, Rocha-Filho PA, Vinardell MP. 2008. Low cytotoxicity of creams and lotions formulated with Buriti oil (Mauritia flexuosa) assessed by the neutral red release test. Food Chem. Toxicol. 46, 2776–2781. http://dx.doi.org/10.1016/j.fct.2008.05.001 PMid:18558457

Zullo BA, Ciafardini G. 2008. The olive oil oxygen radical absorbance capacity (DPPH assay) as a quality indicator. Eur. J. Lipid Sci. Technol. 110, 428–434. http://dx.doi.org/10.1002/ejlt.200700136

Published

2016-06-30

How to Cite

1.
Speranza P, de Oliveira Falcão A, Alves Macedo J, da Silva LH, da C. Rodrigues AM, Alves Macedo G. Amazonian Buriti oil: chemical characterization and antioxidant potential. Grasas aceites [Internet]. 2016Jun.30 [cited 2024Apr.26];67(2):e135. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1601

Issue

Section

Research

Most read articles by the same author(s)