Grasas y Aceites, Vol 67, No 3 (2016)

Fatty acids and astaxanthin composition of two edible native Mexican crayfish Cambarellus (C.) montezumae and Procambarus (M.) bouvieri


https://doi.org/10.3989/gya.1021153

G. Coral-Hinostroza
Department of Animal Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico

M. Díaz-Martínez
Department of Animal Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico

A. Huberman
Department of Biochemistry, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico

J. L. Silencio-Barrita
Department of Science and Food Technology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico

Abstract


The content and composition of the fatty acids (FAs) and astaxanthin (AST) in the edible forms of crayfish: the whole animal of Cambarellus (C.) montezumae, and the tail meat (TM) of Procambarus (M.) bouvieri were determined by GC and HPLC. The exoskeleton (EXK) of P. (M.) bouvieri was also studied. Unsaturated FAs, and mostly oleic acid (C18:1 n-9), were predominant in both edible forms. The contents of the polyunsaturated eicosapentaenoic (C20:5 n-3, EPA), arachidonic (C20:4 n-6, ARA) and docosahexaenoic acid (C22:6 n-3, DHA), were higher in the TM of P. (M.) bouvieri than in the complete C. (C.) montezumae (p < 0.05). Total carotenoids ranged between 2.31 ± 0.33 μg·g-1 and 66.3 ± 3.91 μg·g-1, and were composed mainly of AST ( > 79.50%). AST esters were enriched with saturated FAs in C. (C.) montezumae and with PUFAs in EXK of P. (M.) bouvieri. We conclude that both C. (C.) montezumae and the TM of P. (M.) bouvieri are traditional foods rich in n-3 PUFAs and C. (C.) montezumae in AST. The EXK of P. (M.) bouvieri is a rich potential source of AST, n-3 PUFAs, and the combination AST-DHA.

Keywords


Acocil; Astaxanthin esters; Mexican crayfish; Omega 3 fatty acids

Full Text:


HTML PDF XML

References


Ackefors H, Castell J, Örde-Öström IL. 1997. Preliminary results on the fatty acid composition of freshwater crayfish, Astacus astacus and Pacifastacus leniusculus, held in captivity. J. World Aquacult. Soc. 28, 97–105. http://dx.doi.org/10.1111/j.1749-7345.1997.tb00967.x

Alvarez F, Villalobos JL, Armendáriz G, Hernandez C. 2012. Biogeographic relationship of freshwater crabs and crayfish along the Mexican transition zone: reevaluating Rodríguez (1986) hypothesis. Rev. Mex. Biodivers. 83, 1073–1083.

AOAC. 2000. Official Methods of Analysis of AOAC International. Association of Official Analysis Chemists International. Washington, D.C., USA.

Barros MP, Poppe SC, Bondan EF. 2014. Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6, 1293–317. http://dx.doi.org/10.3390/nu6031293

Bosco AD, Castellini C, Bernardini M. 2001. Nutritional quality of rabbit meat as affected by cooking procedure and dietary Vitamin E. J. Food Sci. 66, 1047–1051. http://dx.doi.org/10.1111/j.1365-2621.2001.tb08233.x

Cerón-Ortiz AN, Moctezuma-Reséndiz O, Ángeles-Monroy MÁ, Montufar-Serrano E, León-Escamilla JA. 2015. Efecto interactivo del alimento y la calidad de agua en el crecimiento y sobrevivencia de postlarvas de acocil de río Cambarellus montezumae. Rev. Mex. Biodivers. 86, 131–142. http://dx.doi.org/10.7550/rmb.48502

Cook CM, Hallaråker H, Sæbø PC, Innis SM, Kelley KM, Sanoshy KD, Berger A, Maki KC. 2016. Bioavailability of Long Chain Omega-3 Polyunsaturated Fatty Acids from Phospholipid-Rich Herring Roe Oil in Men and Women with Mildly Elevated Triacylglycerols. Prostag. Leukotr. Ess. (PLEFA).

Coral-Hinostroza GN, Bjerkeng B. 2002. Astaxanthin from the red crab langostilla (Pleuroncodes planipes): optical R/S isomers and fatty acid moieties of astaxanthin esters. Comp. Biochem. Phys. B. 133, 437–444. http://dx.doi.org/10.1016/S1096-4959(02)00186-0

Cremades O, Parrado J, Alvarez-Ossorio MC, Jover M, de Teran LC, Gutierrez JF, Bautista J. 2003. Isolation and characterization of carotenoproteins from crayfish (Procambarus clarkii). Food Chem. 82, 559–566. http://dx.doi.org/10.1016/S0308-8146(03)00011-6

Czeczuga B. 1971. Composition and tissue distribution of carotenoids and vitamin A in the crayfish Astacus leptodactylus (Esch.) (Crustacea, Decapoda). Comp. Biochem. Phys. B. 39, 945–953. http://dx.doi.org/10.1016/0305-0491(71)90118-0

Dose J, Matsugo S, Yokokawa H, Koshida Y, Okazaki S, Seidel U, Eggersdorfer M, Rimbach G, Esatbeyoglu T. 2016. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin. Int. J. Mol. Sci. 17, 103. http://dx.doi.org/10.3390/ijms17010103

FAO. 2010. Fats and fatty acids in human nutrition. Report of an expert consultation.10–14 November 2008, Geneva. FAO Food and Nutrition. Paper 91. Rome: Food and Agricultural Organisation of the United Nations.

Fernandes CE, da Silva Vasconcelos MA, de Almeida Ribeiro M, Sarubbo LA, Andrade SAC, de Melo Filho AB. 2014. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 160, 67–71. http://dx.doi.org/10.1016/j.foodchem.2014.03.055

García-Romero J, Ginés R, Izquierdo M, Robaina L. 2014. Marine and freshwater crab meals in diets for red porgy (Pagrus pagrus): Effect on fillet fatty acid profile and flesh quality parameters. Aquaculture, 420, 231–239. http://dx.doi.org/10.1016/j.aquaculture.2013.10.035

Gonzalez-Baro MDR, Pollero RJ. 1988. Lipid characterization and distribution among 463 tissues of the freshwater crustacean Macrobrachium borellii during an annual 464 cycle. Comp. Biochem. Phys. B. 91, 711–715. http://dx.doi.org/10.1016/0305-0491(88)90197-6

Harlio?lu AG, Aydin S, Yilmaz O. 2012. Fatty acid, cholesterol and fat-soluble vitamin composition of wild and captive freshwater crayfish (Astacus leptodactylus). Food Sci. Technol. Int. 18, 93–100.

Harlıoglu MM, Köprücü K, Harlıo?lu AG, Yılmaz Ö, Yonar SM, Aydın S, Duran TÇ. 2015. Effects of dietary n-3 polyunsaturated fatty acids on the nutritional quality of abdomen meat and hepatopancreas in a freshwater crayfish (Astacus leptodactylus). J. Food Compos. Anal. 41, 144–150. http://dx.doi.org/10.1016/j.jfca.2015.01.011

Hernández JA, Ochoa AA, Valerio-Alfaro G, Soto-Rodríguez I, Rodríguez-Estrada MT, García HS. 2014. Cholesterol oxidation and astaxanthin degradation in shrimp during sun drying and storage. Food Chem. 145, 832–839. http://dx.doi.org/10.1016/j.foodchem.2013.08.098

Inoue T, Simpson KL, Tanaka Y, Sameshima M. 1988. Condensed astaxanthin of pigmented oil from crayfish carapace and its feeding experiment. Nippon Suisan Gakk. 54, 103–106. http://dx.doi.org/10.2331/suisan.54.103

Konagai C, Yanagimoto K, Hayamizu K, Han L, Tsuji T, Koga Y. 2013. Effects of krill oil containing w-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers. Clin. Interv. Aging. 8, 1247–1257. http://dx.doi.org/10.2147/CIA.S50349

Meyers SP, Bligh D. 1981. Characterization of astaxanthin pigments from heat-processed crayfish waste. J. Agr. Food Chem. 29, 505–508. http://dx.doi.org/10.1021/jf00105a017

Ramírez-Silva I, Villalpando S, Moreno-Saracho JE, Bernal-Medina D. 2011. Fatty acids intake in the Mexican population. Results of the National Nutrition Survey 2006. Nutr. Metab. 8, 33. http://dx.doi.org/10.1186/1743-7075-8-33

Ramprasath VR, Eyal I, Zchut S, Jones PJ. 2013. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil. Lipids Health Dis. 12, 1. http://dx.doi.org/10.1186/1476-511X-12-178

Sachindra NM, Bhaskar N, Mahendrakar NS. 2005. Carotenoids in different body components of Indian shrimps. J. Sci. Food Agric. 85, 167–172. http://dx.doi.org/10.1002/jsfa.1977

Sagi A, Rise M, Isam K, Arad S. (Malis). 1995. Carotenoids and their derivatives in organs of the maturing female crayfish Cherax quadricarinatus. Comp. Biochem. Phys. B. 112, 309–313. http://dx.doi.org/10.1016/0305-0491(95)00069-0

Saw CLL, Yang AY, Guo Y, Kong ANT. 2013. Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2–ARE pathway. Food Chem. Toxicol. 62, 869–875. http://dx.doi.org/10.1016/j.fct.2013.10.023

Stanek M, Borejszo Z, D?browski J, Janicki B. 2011. Fat and cholesterol content and fatty acid profiles in edible tissues of spiny-cheek crayfish, Orconectes limosus (Raf.) from Lake Gop?o (Poland). Arch. Pol. Fish. 19, 241–248. http://dx.doi.org/10.2478/v10086-011-0030-7

Ulbricht TLV, Southgate DAT. 1991. Coronary heart disease: seven dietary factors. The Lancet 338, 985–992. http://dx.doi.org/10.1016/0140-6736(91)91846-M

Valfré F, Caprino F, Turchini GM. 2003. The health benefit of seafood. Vet. Res.Commun. 27, 507–512. http://dx.doi.org/10.1023/B:VERC.0000014208.47984.8c

Vincent M, Ceccaldi HJ. 1988. Relations entre acides gras et pigments caroténoïdes chez un crustacé copépode, Calanipeda aquae-dulcis. Biochem. Syst. Ecol. 16, 317–324. http://dx.doi.org/10.1016/0305-1978(88)90017-8

Wolfe DA, Rao PV, Cornwell DG. 1965. Studies on the fatty acid composition of crayfish lipids. J. Am. Oil Chem. Soc. 42, 633–637. http://dx.doi.org/10.1007/BF02541304

Zagalsky PF, Eliopoulos EE, Findlay JB, 1990. The architecture of invertebrate carotenoproteins. Comp. Biochem. Physiol. B 97, 1–18 . http://dx.doi.org/10.1016/0305-0491(90)90171-O




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es