Grasas y Aceites, Vol 67, No 3 (2016)

Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils


https://doi.org/10.3989/gya.0441161

M. A. Bootello
Instituto de la Grasa, CSIC, Spain

R. Garcés
Instituto de la Grasa, CSIC, Spain

E. Martínez-Force
Instituto de la Grasa, CSIC, Spain

J. J. Salas
Instituto de la Grasa, CSIC, Spain

Abstract


The composition and distribution of fatty acids in triacylglycerol (TAG) molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.

Keywords


Asymmetry coefficient; Differential scanning calorimetry; High-oleic high-stearic fats; Melting – crystallization profile; Solid fat content

Full Text:


HTML PDF XML

References


Carelli A, Cert A. 1993. Comparative study of the determination of triacylglycerol in vegetable oils using chromatographic techniques. J. Chromatogr. A. 630, 213–222. http://dx.doi.org/10.1016/0021-9673(93)80458-K

De Graef V, Vereecken J, Smith KW, Bhaggan K, Dewettinck K. 2012. Effect of TAG composition on the solid fat content profile, microstructure, and hardness of model fat blends with identical saturated fatty acid content. Eur. J. Lipid Sci. Technol. 114, 592–601. http://dx.doi.org/10.1002/ejlt.201100215

Fernández-Moya V, Martínez-Force E, Garcés R. 2005. Oils from improved high stearic acid sunflower seeds. J. Agric. Food Chem. 53, 5326–5330. http://dx.doi.org/10.1021/jf0503412 PMid:15969513

Fernández-Moya V, Martínez-Force E, Garcés R. 2000. Identification of triacylglycerol species from high-saturated sunflower Helianthus annuus. mutants. J. Agric. Food Chem. 48, 764–769. http://dx.doi.org/10.1021/jf9903861 PMid:10725146

Flickinger BD, Huth PJ. 2004. Dietary fats and oils: technologies for improving cardiovascular health. Curr. Atheroscler. Rep. 6, 468–476. http://dx.doi.org/10.1007/s11883-004-0088-4 PMid:15485593

Foubert I, Vereecken J, Smith KW, Dewettinck K. 2006. Relationship between crystallization behavior, microstructure, and macroscopic properties in trans containing and trans free coating fats and coatings. J. Agric. Food Chem. 54, 7256–7262. http://dx.doi.org/10.1021/jf060225e PMid:16968091

Foubert I, Vereecken J, Smith KW, Dewettinck K. 2007. Relationship between crystallization behavior, microstructure, and macroscopic properties in trans containing and trans free filling fats and fillings. J. Agric. Food Chem. 55, 7793–7801. http://dx.doi.org/10.1021/jf070650n PMid:17696486

Garcés R, Mancha M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues, Anal. Biochem. 211, 139–143. http://dx.doi.org/10.1006/abio.1993.1244 PMid:8323025

Gunstone FD. 2002. Vegetable Oils in Food Technology, CRC Press. Boca Raton, Florida.

Legrand P, Rioux V. 2015. Specific roles of saturated fatty acids: Beyond epidemiological data. Eur. J. Lipid Sci. Technol. 117, 1489–1499. http://dx.doi.org/10.1002/ejlt.201400514

List GR. 2004. Decreasing trans and saturated fatty acid content in food oils. Food Technol. 58, 23–31. ISSN 0015-6639

Marangoni AG. 2002. Special issue of FRI – crystallization, structure and functionality of fats. Food Res Int. 35, 907– 908. http://dx.doi.org/10.1016/S0963-9969(02)00152-7

Martínez-Force E, Ruiz-López N, Garcés R. 2004. The determination of the asymmetrical stereochemical distribution of fatty acids in triacylglycerols. Anal. Biochem. 334, 175–182. http://dx.doi.org/10.1016/j.ab.2004.07.019 PMid:15464966

Martínez-Force E, Ruiz-López N, Garcés R. 2009. Influence of specific fatty acids on the asymmetric distribution of saturated fatty acids in sunflower Helianthus annuus L. triacylglycerols. J. Agric. Food Chem. 57, 1595–1599. http://dx.doi.org/10.1021/jf803227n PMid:19166295

Narine SS, Marangoni AG. 1999. Relating structure of fat crystal networks to mechanical properties: A review. Food Res Int. 32, 227–248. http://dx.doi.org/10.1016/S0963-9969(99)00078-2

Ohlrogge J, Browse J. 1995. Lipid biosynthesis. Plant Cell. 7, 957–970. http://dx.doi.org/10.1105/tpc.7.7.957 PMid:7640528 PMCid:PMC160893

Ping Tan C, Nehdi IA. 2015. DSC Analysis of vegetable oils – Relationship between thermal profiles and chemical composition in Chiavaro E (Ed.) Differential scanning calorimetry – Applications in fats and oils technology. CRC Press, Boca Raton, FL, pp. 3–26.

Pleite R, Martínez-Force E, Garcés R. 2006. Increase of the stearic acid content in high-oleic sunflower Helianthus annuus. seeds. J. Agric. Food Chem. 54, 9383–9388. http://dx.doi.org/10.1021/jf061654f PMid:17147422

Salas JJ, Bootello MA, Martínez-Force E, Garcés R. 2009. Tropical Vegetable Fats and Butters: Properties and New Alternatives. OCL Oleagineux 16, 254–258. http://dx.doi.org/10.1051/ocl.2009.0278

Samyn P, Schoukens G, Vonck L, Stanssens D, Van den Abbeele H. 2012. Quality of Brazilian vegetable oils evaluated by (modulated) differential scanning calorimetry. J. Therm. Anal Calorim. 110, 1353–1365. http://dx.doi.org/10.1007/s10973-011-2132-2

Santinelli F, Daminani P, Christie W. 1992. The triacylglycerol structure of olive oil determined by silver ion high performance liquid chromatography in combination with stereospecific analysis. J. Am. Oil Chem. Soc. 69, 552–556. http://dx.doi.org/10.1007/BF02636107

Smith KW, Bhaggan K, Talbot G. 2013. Phase behavior of symmetrical monounsaturated triacylglycerols. Eur. J. Lipid Sci. Technol. 115, 838–846. http://dx.doi.org/10.1002/ejlt.201300035

Takagi T, Ando Y. 1995. Stereospecific analysis of triacyl-sn-glycerols by chiral high performance liquid chromatography. Lipids 26, 542–547. http://dx.doi.org/10.1007/BF02536601

Van der Wal RJ. 1960. Calculation of the distribution of the saturated and unsaturated acyl groups in fats, from pancreatic lipase hydrolysis data. J. Am. Oil Chem. Soc. 37: 18–20. http://dx.doi.org/10.1007/BF02630816

Vereecken J, Foubert I, Smith KW, Dewettinck K. 2009. Effect of SatSatSat and SatOSat on crystallization of model fat blends. Eur. J. Lipid Sci. Technol. 111, 243–258. http://dx.doi.org/10.1002/ejlt.200800150

Wassell P, Young NWG. 2007. Food applications of trans fatty acid substitutes. Int J Food Sci Technol. 42, 503–517. http://dx.doi.org/10.1111/j.1365-2621.2007.01571.x




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es