Influence of the type of cellulosic derivatives on the texture, and oxidative and thermal stability of soybean oil oleogel

Authors

  • A. Totosaus Food Science Lab & Pilot Plant. Tecnológico Estudios Superiores Ecatepec
  • R. Gonzaléz-Gonzaléz Food Science Lab & Pilot Plant. Tecnológico Estudios Superiores Ecatepec
  • M. Fragoso Food Science Lab & Pilot Plant. Tecnológico Estudios Superiores Ecatepec

DOI:

https://doi.org/10.3989/gya.0440161

Keywords:

Cellulose derivatives, DSC, FTIR, Lipid oxidation, Oleogel, Soybean oil

Abstract


The use oleogels (defined as edible oils entrapped in a three-dimensional network employing a self-assembled structuring agent) has recently been proposed to replace saturated fat or trans-fats in foods. In this work the effects of different cellulose derivative mixtures (Avicel, ethyl cellulose and α-cellulose) on lipid stability, glass transition temperature and the texture of soybean oil oleogels were determined by employing a mixture design approach. Avicel affected lipid stability, increasing the oxidative rancidity and peroxide values of oleogels. Oleogels with higher proportions of Avicel also presented higher transition temperatures. A higher percent of ethyl cellulose and α-cellulose in the oleogel mixture resulted in a more stable system with lower oil rancidity and lower glass transition temperatures. In addition, Avicel resulted in a softer and less tacky texture, an important characteristic to consider for food applications.

Downloads

Download data is not yet available.

References

AOAC 1999. Official Method 965.33: Peroxide value of oils and fats. Official Method of Analysis of AOAC International (16th Ed.), Washington, DC.

Barros-López TI, Gomez-Coelho R, Yoshida NC, Honda NK. 2008. Radical scavenging activity of orsellinates. Chem. Pharm. B. 56, 1551–1554. http://dx.doi.org/10.1248/cpb.56.1551

Co ED, Marangoni AG. 2012. Organogels: An Alternative edible oil-structuring method. J. Am. Oil. Chem. Soc. 89, 749–780. http://dx.doi.org/10.1007/s11746-012-2049-3

Coffey DG, Bell DA, Henderson A. 2006. Cellulose and cellulose derivatives. In Food Polysaccharides and their Application, 2nd edition. Stephen AM, Phillips GO, Willimas PA (eds.). CRC Press: Boca Raton, 147–179. PMid:17222814

Cornell JA. 1980. Experiments with Mixtures: Design Models, and the Analysis of Mixture Data. John Wiley & Sons: New York.

Dassanayake LSK, Kodali DR, Ueno S. 2011. Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid. Int. Sci. 16, 432–439. http://dx.doi.org/10.1016/j.cocis.2011.05.005

Davidovich-Pinhas M, Barbut S, Marangoni AG. 2016. Development, characterization, and utilization of food-grade polymer oleogels. Ann. Rev. Food Sci. Technol. 7, 4.1–4.27.

Davidovich-Pinhas M, Gravelle AJ, Barbut S, Marangoni AG. 2015. Temperature effects on the gelation of ethyl cellulose oleogels. Food Hydrocolloid 46, 76–83. http://dx.doi.org/10.1016/j.foodhyd.2014.12.030

Doan CD, Van de Walle D, Dewettinck K, Patel AR. 2015. Evaluating the oil-gelling properties of natural waxes in rice bran oil: rheological, thermal, and microstructural study. J. Am. Oil Chem. Soc. 92, 801–811. http://dx.doi.org/10.1007/s11746-015-2645-0

Gravelle AJ, Barbut S, Marangoni AG. 2012. Ethyl cellulose oleogels: Manufacturing considerations and effects of oil oxidation. Food Res. Int. 48, 578–583. http://dx.doi.org/10.1016/j.foodres.2012.05.020

Gravelle AJ, Barbut S, Marangoni AG. 2013. Fractionation of ethyl cellulose oleogels during setting. Food Funct. 4, 153–161. http://dx.doi.org/10.1039/C2FO30227F PMid:23165763

Gravelle AJ, Barbut S, Quinton M, Marangoni AG. 2014. Towards the development of a predictive model of the formulation-dependent mechanical behaviour of edible oil-based ethylcellulose oleogels. J. Food Eng. 143, 114–122. http://dx.doi.org/10.1016/j.jfoodeng.2014.06.036

Guenet J-M. 1992. Thermoreversible gelation of polymers and biopolymers. Academic Press, London.

Jadhav SR, Hwang H, Huang Q, John G. 2013. Medium-chain sugar amphiphiles: a new family of healthy vegetable oil structuring agents. J. Agric. Food Chem. 61, 12005–12011. http://dx.doi.org/10.1021/jf401987a PMid:24236574

Langkilde FW, Svantesson A. 1995. Identification of celluloses with Fourier-Transform (FT) mid-infrared, FT-Raman and near-infrared spectrometry. J. Pharm. Biomed. Analysis, 13, 409–414. http://dx.doi.org/10.1016/0731-7085(95)01298-Y

Laredo T, Barbut S, Marangoni AG. 2011. Molecular interactions of polymer oleogelation. Soft Matter 7, 2734–2743. http://dx.doi.org/10.1039/c0sm00885k

Nikiforidis CV, Scholten E. 2015. Polymer organogelation with chitin and chitin nanocrystals. RSC Adv. 5, 37789–37799. http://dx.doi.org/10.1039/C5RA06451A

Patel AR, Rajarethinem PS, Gr?dowska A, Turhan O, Lesaffer A, De Vos WH, Van de Walle D, Dewettinck K. 2014. Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food Funct. 5, 645–652. http://dx.doi.org/10.1039/C4FO00034J PMid:24647527

Pernetti M, van Malssen KF, Flöter E, Bot A. 2007. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid. Int. Sci. 12, 221–231. http://dx.doi.org/10.1016/j.cocis.2007.07.002

Proniewicz LM, Paluszkiewicz C, Wese?ucha-Birczy?ka A, Majcherczyk H, Bara?ski A, Konieczna A. 2001. FT-IR and FT-Raman study of hydrothermally degradated cellulose. J. Mol. Struct. 596, 163–169. http://dx.doi.org/10.1016/S0022-2860(01)00706-2

Pushpamalar V, Langford SJ, Ahmad M, Lim YY. 2006. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohyd. Polym. 64, 312–318. http://dx.doi.org/10.1016/j.carbpol.2005.12.003

Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C. 2011. Rheological and mechanical properties of oleogels based on castor oil and cellulosic derivatives potentially applicable as bio-lubricating greases: Influence of cellulosic derivatives concentration ratio. J. Ind. Eng. Chem. 17, 705–711. http://dx.doi.org/10.1016/j.jiec.2011.05.019

Stortz TA, Zetzl AK, Barbut S, Cattaruzza A, Marangoni AG. 2012. Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technol. 24, 151–154. http://dx.doi.org/10.1002/lite.201200205

Yun JM, Surh J. 2012. Fatty acid composition as a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress. Prev. Nutr. Food Sci. 17, 158–165. http://dx.doi.org/10.3746/pnf.2012.17.2.158 PMid:24471078 PMCid:PMC3866755

Zetzl AK, Marangoni AG, Barbut S. 2012. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct. 3, 327–337. http://dx.doi.org/10.1039/c2fo10202a PMid:22377795

Published

2016-09-30

How to Cite

1.
Totosaus A, Gonzaléz-Gonzaléz R, Fragoso M. Influence of the type of cellulosic derivatives on the texture, and oxidative and thermal stability of soybean oil oleogel. Grasas aceites [Internet]. 2016Sep.30 [cited 2024Mar.29];67(3):e152. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1618

Issue

Section

Research