Grasas y Aceites, Vol 67, No 4 (2016)

Multivariate analysis of seasonal variation in the composition and thermal properties of butterfat with an emphasis on authenticity assessment


https://doi.org/10.3989/gya.0453161

J. Tomaszewska-Gras
Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poland

Abstract


The aim of this study was to analyze the seasonal variation in the composition and thermal properties of butterfat (BF) in order to evaluate the applicability of differential scanning calorimetry (DSC) for the authenticity assessment of butter. The composition of fatty acids (FA) and triacylglycerols (TAG) and the thermal properties of genuine BF purchased in the summer and in the winter from six producers were determined. Principal component analysis (PCA) was used to recognize variation and as a result, all BF samples were classified into two groups: one composed of mixed samples from the summer and winter and the other comprising only summer BF samples. DSC and GC analysis revealed that the group of only summer BF samples was characterized by lower melting temperatures and peak heights of low- and medium melting fractions and the highest proportions of unsaturated FAs (ΣC18:1, ΣC18:2, ΣC18:3). The results indicated that most of the variation in the composition and thermal properties was affected by summer BF samples, which may result from the alternative animal feeding systems employed in the summer season, i.e., pasture vs. indoor. Therefore, seasonal variation should be taken into consideration during the elaboration of the analytical method of authenticity assessment.

Keywords


Butter; DSC; Fatty acids; Melting properties; PCA; Triacylglycerols

Full Text:


HTML PDF XML

References


Buldo P, Larsen MK, Wiking L. 2013. Multivariate data analysis for finding the relevant fatty acids contributing to the melting fractions of cream. J. Sci. Food Agric. 93, 1620–1625. https://doi.org/10.1002/jsfa.5934 PMid:23136137

Capuano E, Gravink R, Boerrigter-Eenling R, van Ruth SM. 2015. Fatty acid and triglycerides profiling of retail organic, conventional and pasture milk: Implications for health and authenticity. Int. Dairy J. 42, 58–63. https://doi.org/10.1016/j.idairyj.2014.11.002

Christie WW, Han X. 2012. Lipid Analysis. Oily Press Lipid Library Series, Woodhead Publishing.

Couvreur S, Hurtaud C, Lopez C, Delaby L, Peyraud JL. 2006. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 89, 1956–1969. https://doi.org/10.3168/jds.S0022-0302(06)72263-9

Cullinane N, Aherne S, Connolly JF, Phelan JA. 1984.Seasonal variation in the triglyceride and fatty acid composition of Irish butter. Irish J. Food Sci. Technol. 8, 1–12.

Glaeser H. 2002. Determination of the milk fat content of fat mixtures. Grasas Aceites 53, 357–358. https://doi.org/10.3989/gya.2002.v53.i3.329

Derewiaka D, Sosi?ska E, Obiedzi?ski M, Krogulec A, Czaplicki S. 2011. Determination of the adulteration of butter. Eur. J. Lipid Sci. Tech. 113, 1005–1011. https://doi.org/10.1002/ejlt.201100006

EC REGULATION No. 273/2008 of 5 March 2008 laying down detailed rules for the application of Council Regulation (EC) No. 1255/1999 as regards methods for the analysis and quality evaluation of milk and milk products.

Heussen PCM, Janssen H-G, Samwel IBM, van Duynhoven JPM. 2007. The use of multivariate modelling of near infra-red spectra to predict the butter fat content of spreads. Anal. Chim. Acta 595, 176–181. https://doi.org/10.1016/j.aca.2007.01.048 PMid:17605998

Hurtaud C, Delaby L, Peyraud JL. 2002. Evolution of milk composition and butter properties during the transition between winter-feeding and pasture. Grassl. Sci. Eur. 7, 574–575.

Hurtaud C, Faucon F, Couvreur S, Peyrault JL. 2010. Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. J. Dairy Sci. 93, 1429–1443. https://doi.org/10.3168/jds.2009-2839 PMid:20338420

Larsen K, Andersen KK, Kaufmann N, Wiking L. 2014. Seasonal variation in the composition and melting behavior of milk fat. J. Dairy Sci. 97, 4703–4712. https://doi.org/10.3168/jds.2013-7858 PMid:24856988

Molkentin J, Precht D. 1987. Representative determination of the butyric acid content in European milk fats. Milchwissenschaft 52, 82–85.

Moore JC, Spink J, Lipp M. 2012. Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. J. Food Sci. 77, 118–126. https://doi.org/10.1111/j.1750-3841.2012.02657.x PMid:22486545

Nogala-Ka?ucka M, Pikul J, Siger A. 2008. Applying liquid chromatography (HPLC) to study the genuineness of butter. Zywn.-Nauk. Technol. Ja 58, 47–56.

Ortíz-González G, Jiménez-Flores R, Bremmer DR, Clark JH, De Peters EJ, Schmidt SJ, Drackley JK. 2007. Functional properties of butter oil made from bovine milk with experimentally altered fat composition. J. Dairy Sci. 90, 5018–5031. https://doi.org/10.3168/jds.2007-0137 PMid:17954741

Palmquist DL, Beaulieu AD, Barbano DM. 1993. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 76, 1753–1771. https://doi.org/10.3168/jds.S0022-0302(93)77508-6

Schroeder GF, Delahoy JE, Vidaurreta I, Bargo F, Gagliostro GA, Muller LD. 2003. Milk fatty acid composition of cows fed a total mixed ration or pasture plus concentrate replacing corn with fat. J. Dairy Sci. 86, 3237–3248. https://doi.org/10.3168/jds.S0022-0302(03)73927-7

Shi Y, Smith CM, Hartel RWJ. 2001. Compositional Effects on Milk Fat Crystallization. Dairy Sci. 84, 2392–2401. https://doi.org/10.3168/jds.S0022-0302(01)74688-7

Sbihi HM, Nehdi IA, Tan CP, Al-Resayes SI. 2015. Characteristics and fatty acid composition of milk fat from Saudi Aradi goat. Grasas Aceites 66, e101. https://doi.org/10.3989/gya.0233151

Tan CP, Che Man YB. 2002. Comparative differential scanning calorimetric analysis of vegetable oils: I. Effects of heating rate variation. Phytochem. Anal. 13, 129–141. https://doi.org/10.1002/pca.633 PMid:12099103

Tomaszewska-Gras J. 2013. Melting and crystallization DSC profiles of milk fat depending on selected factors. J. Therm. Anal. Calorim. 113, 199–208. https://doi.org/10.1007/s10973-013-3087-2

Tomaszewska-Gras J. 2016a. Rapid quantitative determination of butter adulteration with palm oil using the DSC technique. Food Control. 60, 629–635. https://doi.org/10.1016/j.foodcont.2015.09.001

Tomaszewska-Gras J. 2016b. DSC coupled with PCA analysis as a tool for butter authenticity assessment. J. Therm. Anal. Calorim. 126, 61–68. https://doi.org/10.1007/s10973-016-5346-5




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es