Grasas y Aceites, Vol 69, No 3 (2018)

Approaches to improve the growth of the starter lactic acid bacterium OM13 during the early stages of green Spanish-style table olive production

A. Alfonzo
Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy

A. Martorana
Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy

L. Settanni
Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy

M. Matraxia
Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy

O. Corona
Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy

P. Vagnoli
Lallemand Italia, Italy

T. Caruso
Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy

G. Moschetti
Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy

N. Francesca
Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Italy


The present research aimed at determining the optimal conditions for the lactic acid fermentation of green Spanish-style table olives. The work is a follow-up, and focuses on the performance of the commercial starter strain Lactobacillus pentosus OM13 by applying an acclimatization step and the addition of nutrients, and concentrations of lactic acid that were previously investigated. The acclimatization of the cells warranted the dominance of the starter culture even at an inoculation level of 2 Log cycles lower than that commonly used in standard fermentation. A significant effect was found in terms of acidification kinetics within the first week of fermentation, with the highest decrease in pH, at ~2.5 units, which occurred in the trial and after inoculation with 106 CFU/mL of starter after acclimatation (EO3) that showed values similar to control C obtained with Lactobacillus pentosus OM13 at a concentration of 107 CFU/mL. After day 3, further decreases in pH of up to 4.30 were observed until day 30, and then these values remained almost constant until the end of process (day 190) when lower pH values were reached for trial EO3 and control C. The results of microbiological dynamics, the changes in VOCs and finally the effect of the processes on the sensory analysis of the fermented product were investigated by multivariate analysis. The acclimatization process and the initial inoculation level influenced the bacterial microflora, aromatic compounds and organoleptic characteristics of the final product. Finally, the trials C, EO2 and EO3 showed higher values (60-80%) of preferences and satisfaction compared to other experimental productions.


Fermentation; Food Microbiology; Olive; Sensory Evaluation; Starter Cultures

Full Text:



Aponte M, Blaiotta G, La Croce F, Mazzaglia A, Farina V, Settanni L, Moschetti G. 2012. Use of selected autochthonous lactic acid bacteria for Spanish- style table olive fermentation. Food Microbiol. 30, 8–16.

Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido- Fernández A. 2008. Role of yeasts in table olive production. Int. J. Food Microbiol. 128, 189–196.

Castro A de, Montaño A, Casado FJ, Sánchez A H, Rejano L. 2002. Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol. 19(6), 637–644.

Chasseriaud L, Krieger-Weber S, Déléris-Bou M, Sieczkowski N, Jourdes M, Teissedre PL, Claisse 0, Lonvaud-Funel A. 2015. Hypotheses on the effects of enological tannins and total red wine phenolic compounds on Oenococcus oeni. Food Microbiol. 52, 131–137.

Corona O, Alfonzo A, Ventimiglia G, Nasca A, Francesca N, Martorana A, Moschetti G, Settanni L. 2016. Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production. Food Microbiol. 59, 43–56.

Francesca N, Barbera M, Martorana A, Saiano F, Gaglio R, Aponte M, Moschetti G, Settanni L. 2016. Optimised method for the analysis of phenolic compounds from caper (Capparis spinosa L.) berries and monitoring of their changes during fermentation. Food Chem. 196, 1172–1179.

Gaglio R, Scatassa ML, Cruciata M, Miraglia V, Corona O, Di Gerlando R, Portolano B, Moschetti G, Settanni L. 2014. In vivo application and dynamics of lactic acid bacteria for the four-season production of Vastedda-like cheese. Int. J. Food Microbiol. 177, 37–48.

Gaglio R, Francesca N, Maniaci G, Corona O, Alfonzo A, Giosuè C, Di Noto A, Cardamone C, Sardina MT, Portolano B, Alabiso, M. 2016a. Valorization of indigenous dairy cattle breed through salami production. Meat Sci. 114, 58–68.

Gaglio R, Cruciata M, Di Gerlando R, Scatassa ML, Cardamone C, Mancuso I, Sardina MT, Moschetti G, Portolano B, Settanni L. 2016b. Microbial activation of wooden vats used for traditional cheese production and evolution of the neo-formed biofilms. Appl. Environ. Microb. 82, 585–595.

Gaglio R, Francesca N, Di Gerlando R, Mahony J, De Martino S, Stucchi C, Moschetti G, Settanni L. 2017. Enteric bacteria of food ice and their survival in alcoholic beverages and soft drinks. Food Microbiol. 67, 17–22.

Garrido-Fernández A, Fernández Díez MJ, Adams MR. 1997. Table Olives, Production and Processing. Champman and Hall, London.

Holzapfel WH. 2002. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 75, 197–212.

Hurtado A, Reguant C, Esteve-Zarzoso B, Bordons A, Rozès N. 2008. Microbial population dynamics during the processing of Arbequina table olives. Food Res. Int. 41, 738–744.

Hurtado A, Reguant C, Bordons A, Rozès N. 2012. Lactic acid bacteria from fermented table olives. Food Microbiol. 31, 1–8.

Jervis SM, Guthrie B, Guo G, Worch T, Hasted A, Drake MA. 2016. Comparison of Preference Mapping Methods on Commodity Foods with Challenging Groups of Low- Variance Attributes: Sliced Whole Wheat Sandwich Bread Example. J. Sens. Stud. 31, 34–49.

Kontkanen D, Inglis DL, Pickering GJ, Reynolds A. 2004. Effect of yeast inoculation rate, acclimatization, and nutrient addition on icewine fermentation. Am. J. Enol. Viticult. 55, 363–370.

Marsilio V, d'Andria R, Lanza B, Russi F, Iannucci E, Lavini A, Morelli G. 2006. Effect of irrigation and lactic acid bacteria inoculants on the phenolic fraction, fermentation and sensory characteristics of olive (Olea europaea L. cv. Ascolana tenera) fruits. J. Sci. Food Agr. 86, 1005–1013.

Martorana A, Alfonzo A, Settanni L, Corona O, La Croce F, Caruso T, Moschetti G, Francesca N. 2015. An innovative method to produce green table olives based on "pied de cuve" technology. Food Microbiol. 50, 126–140.

Martorana A, Alfonzo A, Settanni L, Corona O, La Croce F, Caruso T, Moschetti G, Francesca N. 2016. Effect of the mechanical harvest of drupes on the quality characteristics of green fermented table olives. J. Sci. Food Agr. 96, 2004–2017.

Martorana A, Alfonzo A, Gaglio R, Settanni L, Corona O, La Croce F, Vagnoli P, Caruso T, Moschetti G, Francesca N. 2017a. Evaluation of different conditions to enhance the performances of Lactobacillus pentosus OM13 during industrial production of Spanish-style table olives. Food Microbiol. 61, 150–158.

Martorana A, Di Miceli C, Alfonzo A, Settanni L, Gaglio R, Caruso T, Moschetti G, Francesca N. 2017b. Effects of irrigation treatments on the quality of table olives produced with the Greek-style process. Ann. Microbiol. 67, 37–48.

Moschetti G, Corona O, Gaglio R, Squadrito M, Parrinello A, Settanni L, Barone E, Francesca N. 2016. Use of fortified pied de cuve as an innovative method to start spontaneous alcoholic fermentation for red winemaking. Aust. J. Grape Wine R. 22, 36–45.

Oliveira T, Ramalhosa E, Nunes L, Pereira JA, Colla E, Pereira EL. 2017. Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov. Food Sci. Emerg. In press.

Panagou EZ, Tassou CC, Katsaboxakis CZ. 2003. Induced lactic acid fermentation of untreated green olives of the Conservolea cultivar by Lactobacillus pentosus. J. Sci. Food Agr. 83, 667–674.

Randazzo CL, Todaro A, Pino A, Pitino I, Corona O, Caggia C. 2017. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol. 65, 136–148.

Rodríguez-Gómez F, Romero-Gil V, Bautista-Gallego J, Garrido- Fernández A, Arroyo López FN. 2012. Multivariate analysis to discriminate yeasts strains with technological applications in table olive processing. World J. Microb. Biot. 28, 1761–1770.

Sabatini N, Marsilio V. 2008. Volatile compounds in table olives (Olea europaea L., Nocellara del Belice cultivar). Food Chem. 107, 1522–1528.

Servili M, Settanni L, Veneziani G, Esposto S, Massitti O, Taticchi A, Urbani S, Montedoro GF, Corsetti A. 2006. The use of Lactobacillus pentosus 1MO to shorten the debittering process time of black table olives (Cv. Itrana and Leccino): a pilot-scale application. J. Agr. Food Chem. 54, 3869–3875.

Teixeira P, Castro H, Kirby R. 1995. Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J. Appl. Microbiol. 78, 456–462.

Torriani S, Felis GE, Dellaglio F. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microb. 67, 3450– 3454.

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support