Grasas y Aceites, Vol 70, No 1 (2019)

The effect of temperature on rice oil bleaching to reduce oxidation and loss in bioactive compounds


https://doi.org/10.3989/gya.0233181

M. M. Strieder
School of Chemistry and Food, Federal University of Rio Grande, Brazil
orcid http://orcid.org/0000-0002-0925-0220

J. I. Engelmann
School of Chemistry and Food, Federal University of Rio Grande, Brazil
orcid http://orcid.org/0000-0001-7244-8195

R. S. Pohndorf
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Brazil
orcid http://orcid.org/0000-0002-3498-8542

P. A. Rodrigues
School of Chemistry and Food, Federal University of Rio Grande, Brazil
orcid http://orcid.org/0000-0001-8148-0891

R. S. Juliano
School of Chemistry and Food, Federal University of Rio Grande, Brazil
orcid http://orcid.org/0000-0001-9348-4195

G. L. Dotto
Chemical Engineering Department, Federal University of Santa Maria, Brazil
orcid http://orcid.org/0000-0002-4413-8138

L. A.A. Pinto
School of Chemistry and Food, Federal University of Rio Grande, Brazil
orcid http://orcid.org/0000-0002-4477-0686

Abstract


Refining conditions are very important to obtain high-quality rice oil. This work aimed at evaluating the effect of bleaching temperature in chemical and physical refining processes to avoid losses in γ-oryzanol and carotenoids. In addition, the aspects related to rancidity were investigated. Samples of degummed oil (obtained by a physical procedure) and of neutralized oil (obtained by a chemical procedure) were provided by a local industry. The oils were bleached at 80, 95 and 110 °C using 1% (w w-1) activated earth. The temperature of 95 °C was the best in relation to oxidative stability. The γ-oryzanol and carotenoids were better preserved through physical refining than by the chemical procedure by about 64 and 84%, respectively. However, the oxidation indicators were high for the oil bleached by the physical procedure, indicating that bleaching without prior neutralization is viable, but it is necessary to obtain an industrial crude oil with less oxidation.

Keywords


Carotenoids; Chlorophylls; Peroxides; Refinement; γ-oryzanol

Full Text:


HTML PDF XML

References


AOCS. 2017. Official methods and recommended practices of the American Oil Chemist's Society, 7th ed. Urbana, IL: AOCS Press.

Baümler ER, Crapiste GH, Carelli AA. 2007. Sunflower-oil wax reduction by seed solvent washing. J. Am. Oil Chem. Soc. 84, 603–608. https://doi.org/10.1007/s11746-007-1074-0

Bucci R, Magri AD, Magri AL, Marini F. 2003. Comparison of three spectrophotometric methods for the determination of ?-oryzanol in rice bran oil. Anal. Bioanal. Chem. 375, 1254–1259. https://doi.org/10.1007/s00216-002-1700-5 PMid:12733048

Choe E, Min DB. 2006. Mechanisms and factors for edible oil oxidation. Comp. Rev. in Food Sci. and Safety 5, 169–186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

Jha AB, Panchal SS. 2017. Neuroprotection and cognitive enhancement by treatment with ?-oryzanol in sporadic Alzheimer's disease. J. Appl. Biomed. In Press. https://doi.org/10.1016/j.jab.2017.05.001

García-Moreno PJ, Guadix A, Gómez-Robledo L, Melgosa M, Guadix EM. 2013. Optimization of bleaching conditions for sardine oil. J. Food Eng. 116, 606–612. https://doi.org/10.1016/j.jfoodeng.2012.12.040

Garcia JU, Santos HI, Fialho AP, Garro FLT, Antoniosi Filho NR, Leles MIG. 2004. Estudo da estabilidade térmica de óleos de peixes em atmosfera de nitrogênio. Ecl. Quím. 29, 41–46. https://doi.org/10.1590/S0100-46702004000200006

González-Tovar LA, Noriega-Rodríguez JA, Ortega-García J, Gámez-Meza N, Medina-Juárez LA. 2005. Cinética de adsorción de pigmentos, peróxidos y tocoferoles durante el proceso de blanqueo del aceite de soja. Grasas Aceites 56, 324–327.

Güneser BA, Yılmaz E, Ok S. 2017. Cold pressed versus refined winterized corn oils: quality, composition and aroma. Grasas Aceites 68, 1–12.

Huang J, Sathivel, S. 2010. Purifying salmon oil using adsorption, neutralization, and a combined neutralization and adsorption process. J. Food Eng. 96, 51–58. https://doi.org/10.1016/j.jfoodeng.2009.06.042

Juliano C, Cossu M, Alamanni MC, Piu L. 2005. Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int. J. Pharm. 299, 146–154. https://doi.org/10.1016/j.ijpharm.2005.05.018

Kreps F, Vrbiková L, Schmidt ?. 2014. Influence of industrial physical refining on tocopherol, chlorophyll and beta-carotene content in sunflower and rapeseed oil. Eur. J. Lipid Sci. Technol. 116, 1572–1582. https://doi.org/10.1002/ejlt.201300460

Köseoglu SS, Engelgau DE. 1990. Membrane applications and research in the edible oil industry: An assessment. J. Am. Oil Chem. Soc. 67, 239–269. https://doi.org/10.1007/BF02540650

Lin H-R, Lin C-I. 2005. Kinetics of adsorption of free fatty acids from water-degummed and alkali-refined soy oil using regenerated clay. Sep. Purif. Technol. 44, 258–265. https://doi.org/10.1016/j.seppur.2005.01.014

Marina AM, Man YBC, Nazimah SAH, Amin I. 2009. Chemical properties of virgin coconut oil. J. Am. Oil Chem. Soc. 86, 301–307. https://doi.org/10.1007/s11746-009-1351-1

Marrakchi F, Kriaa K, Hadrich B, Kechaou N. 2015. Experimental investigation of processing parameters and effects of degumming, neutralization and bleaching on lampante virgin olive oil's quality. Food Bioprod. Process. 94, 124–135. https://doi.org/10.1016/j.fbp.2015.02.002

Moigradean D, Poiana M-A, Gogoasa I. 2012. Quality characteristics and oxidative stability of coconut oil during storage. J. Agroaliment. Proc. Technol. 18, 272–276.

Mustapa AN, Manan ZA, Azizi CYM, Setianto WB, Mohd Omar AK. 2011. Extraction of ?-carotenes from palm oil mesocarp using sub-critical R134a. Food Chem. 125, 262– 267. https://doi.org/10.1016/j.foodchem.2010.08.042

Olmedo RH, Asensio CM, Grosso NR. 2015. Thermal stability and antioxidant activity of essential oils from aromatic plants farmed in Argentina. Ind. Crops Prod. 69, 21–28. https://doi.org/10.1016/j.indcrop.2015.02.005

Paucar-Menacho LM, Silva LH, Sant'ana AS, Gonçalves LAG. 2007. Refino de óleo de farelo de arroz (Oryza sativa L.) em condições brandas para preservação do ?-oryzanol. Cienc. Tecnol. Aliment. 27, 45–53. https://doi.org/10.1590/S0101-20612007000500009

Pestana-Bauer VR, Zambiazi RC, Mendonça CRB, Beneito- Cambra M, Ramis-Ramos G. 2012. ?-Oryzanol and tocopherol contents in residues of rice bran oil refining. Food Chem. 134, 1479–1483. https://doi.org/10.1016/j.foodchem.2012.03.059 PMid:25005970

Pohndorf RS, Cadaval Jr TRS, Pinto LAA. 2016a. Kinetics and thermodynamics adsorption of carotenoids and chlorophylls in rice bran oil bleaching. J. Food Eng. 185, 9–16. https://doi.org/10.1016/j.jfoodeng.2016.03.028

Pohndorf RS, Pinheiro CP, Pinto LAA. 2016b. Kinetic study of adsorption of pigments and oxidation products in the bleaching of rice bran oil. Int. J. Food Eng. 12, 211–219. https://doi.org/10.1515/ijfe-2015-0164

Sabah E. 2007. Decolorization of vegetable oils: Chlorophyll-a adsorption by acid-activated sepiolite. J. Colloid. Interface Sci. 310, 1–7. https://doi.org/10.1016/j.jcis.2007.01.044 PMid:17300794

Santos FW. 2013. ?-Oryzanol protects against acute cadmium-induced oxidative damage in mice testes. Food Chem. Toxicol. 55, 526–532. https://doi.org/10.1016/j.fct.2013.01.048 PMid:23395783

Shahidi F. 2005. Edible oil and fat products: edible oils. In: Bailey's Industrial Oil and Fat Products, 6th ed., v. 2. New York: Wiley & Sons. ISBN: 978-0-471-38460-1. https://doi.org/10.1002/047167849X

Silva FAM, Borges MFM, Ferreira MA. 1999. Métodos para avaliação do grau de oxidação lipídica e da capacidade antioxidante. Quím. Nova 22, 94–103. https://doi.org/10.1590/S0100-40421999000100016

Silva SM, Sampaio KA, Ceriani R, Verhé R, Stevens C, De Greyt W, Meirelles AJA. 2014. Effect of type of bleaching earth on the final color of refined palm oil. LWT Food Sci. Technol. 59, 1258–1264. https://doi.org/10.1016/j.lwt.2014.05.028

Spiazzi CC, Manfredini V, Da Silva FEB, Flores EMM, Izaguirry AP, Vargas LM, Soares MB, Santos FW. 2013. ?-Oryzanol protects against acute cadmium-induced oxidative damage in mice testes. Food Chem. Toxicol. 55, 526–532. https://doi.org/10.1016/j.fct.2013.01.048 PMid:23395783

Strieder MM, Pinheiro CP, Borba VS, Pohndorf RS, Cadaval Jr TRS, Pinto LAA. 2017. Bleaching optimization and winterization step evaluation in the refinement of rice bran oil. Sep. Purif. Technol. 175, 72–78. https://doi.org/10.1016/j.seppur.2016.11.026

Szabo M-R, Chambre D, Iditoiu C. 2012. TG/DTG/DTA for the oxidation behavior characterization of vegetable and animal fats. J. Therm. Anal. Calorim. 110, 281–285. https://doi.org/10.1007/s10973-012-2253-2

Torres-González M, Angulo-Guerrero O, Oliart-Ros RM, Medina-Juárez LA. 2009. Efecto de la refinación física sobre la calidad química y sensorial del aceite de coco. Grasas Aceites 60, 96–101.

Vaskova H, Buckova M. 2015. Thermal degradation of vegetable oils: spectroscopic measurement and analysis. Procedia Eng. 100, 630–635. https://doi.org/10.1016/j.proeng.2015.01.414

Zhu M, Wen X, Zhao J, Liu F, Ni Y, Ma L, Li J. 2016. Effect of industrial chemical refining on the physicochemical properties and the bioactive minor components of Peanut oil. J. Am. Oil Chem. Soc. 93, 285–294. https://doi.org/10.1007/s11746-015-2776-3




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es