Grasas y Aceites, Vol 70, No 2 (2019)

The effect of cold storage, time and the population of Pseudomonas species on milk lipolysis


https://doi.org/10.3989/gya.0583181

F. A.B. Pereira
Master’s Degree in Science and Technology of Milk and Dairy Products, Universidade Norte do Parana – UNOPAR, Brazil
orcid http://orcid.org/0000-0002-8826-1891

L. L. Luiz
Master’s Degree in Science and Technology of Milk and Dairy Products, Universidade Norte do Parana – UNOPAR, Brazil
orcid http://orcid.org/0000-0002-5364-5131

S. R. Bruzaroski
Master’s Degree in Science and Technology of Milk and Dairy Products, Universidade Norte do Parana – UNOPAR, Brazil
orcid http://orcid.org/0000-0001-5574-331X

R. C. Poli-Frederico
Master and PhD’s Degree in Rehabilitation Science, UNOPAR, Brazil
orcid http://orcid.org/0000-0003-4631-4606

R. Fagnani
Master’s Degree in Science and Technology of Milk and Dairy Products, Universidade Norte do Parana – UNOPAR, Brazil
orcid http://orcid.org/0000-0002-7392-2087

E. H.W. Santana
Master’s Degree in Science and Technology of Milk and Dairy Products, Universidade Norte do Parana – UNOPAR, Brazil
orcid http://orcid.org/0000-0002-7789-2575

Abstract


The aim of this study was to evaluate the lipolytic index (LI) of Pseudomonas fluorescens and Pseudomonas putida (2, 5, 6 log CFU/mL) in milk during 96 h by the Lipo R method. The strains were isolated from refrigerated raw milk (30 °C, 48 h), and species were confirmed by PCR, inoculated in reconstituted whole milk, and stored at 2 °C, 4 °C, and 8 °C. The storage time (ST) and temperature were associated with LI of P. putida. The interaction among lipolysis, temperature, and ST occurs even with a low population of P. putida and these variables combined together contributed to about 77% of the free fatty acids (FFA) in milk. The ST, temperature, and population of P. fluorescens showed a significant effect on its LI, and the variables contributed to about 43% of FFA. LI was about 224% higher in milk with P. fluorescens than with P. putida. The reduc-tion in ST and milk temperature resulted in a decrease in lipid lysis and a lower index of FFA by P. putida and P. fluorescens, with P. fluorescens showing a higher lipolytic capacity.

Keywords


Enzymatic activity; Lipase; Milk lipolysis; Pseudomonas fluorescens; Pseudomonas putida

Full Text:


HTML PDF XML

References


Almeida KM, Bruzaroski SR, Zanol D, Melo M, Santos JS, Aragon-Alegro LC, Botaro BG, Santana EHW. 2017. Pseudomonas spp. and P. fluorescens: population in refrigerated raw milk. Ciênc. Rural. 47, 1-6.

Arcuri EF, Silva PDL, Brito MAVP, Brito JRF, Lange CC, Magalhães MMA. 2008. Counting, isolation and characterization of psychrotrophic bacteria from refrigerated raw milk. Ciênc. Rural. 38, 2250–2255.

Chen L, Daniel RM, Collbera T. 2003. Detection and impact of protease and lipase activities in milk and milk powders. Int. Dairy J. 13, 255–275.

Deeth HC, Fitz-Gerald CH. 2006. Lipolytic enzymes and hydrolytic rancidity, in Fox P F., McSweeney PLH (Ed.). Advanced dairy chemistry: lipids. 3rd Springer: New York, p. 481–556.

Dogan B, Boor KJ. 2003. Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl. Environ. Microbiol. 69, 130–138.

Fonseca P, Moreno R, Rojo F. 2011. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environ. Microbiol. Rep. 3, 329–339.

Frank JF, Christen GL, Bullerman LB. 1992. Tests for groups of microorganisms, in Marshall RT (Ed) Standard methods for the examination of dairy products. American Public Health Association: New York, p. 837–856.

Kumaresan G, Annalvilli R, Sivakumar K. 2007. Psychrotrophic spoilage of raw milk at different temperatures of storage. J. Appl. Sci. Res. 3, 1383–1387.

Mahieu H. 1984. Methode rapide de dosage dês acides gras libres dans le lait: methode Lipo R. Rec. Méd. Vét. 135, 709–716.

Mahieu H. 1991. Modificaciones de la leche después de su recogida, in Luquet FM (ed) Leche y productos lácteos: la leche de la mama a la lechería, Acribia: Zaragoza. p. 181–226.

Mu Z, Du M, Bai Y. 2009. Purification and properties of a heat-stable enzyme of Pseudomonas fluorescens Rm12 from raw milk. Eur. Food Res. Technol. 228, 725–734.

Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M. 2015. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int. J. Food Microbiol. 211, 57–65.

Nuñez M, Nuñez JA. 1983. Proteasas de psicrotrofos gram negativos: efectos sobre la leche y los productos lácteos. Revista Española de Lechería 130, 251–260

Scarpellini M, Franzetti L, Galli A. 2004. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microb. Lett. 236, 257–260.

Spilker T, Coenye T, Vandame P, Lipuma JJ. 2004. PCR-Based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J. Clin. Microb. 42, 2074–2079.

Sorhaung T, Stepaniak L. 1997. Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends Food Sci. Technol. 8, 35–37.

Xin L, Zhaoxu M, Zhang L, Cui Y, Han X, Yi H. 2017. The diversity and proteolytic properties of psychrotrophic bacteria in raw cows’ milk from North China. Int. Dairy J. 66, 34–41.

Wiking L, Björck L, Nielsen JH. 2003. Influence of feed composition on stability of fat globules during pumping of raw milk. Int. Dairy J. 13, 799–803.

Yamamoto S, Harayama S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. App. Environ. Microbiol. 61, 1104–1109.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es