The effect of cold storage, time and the population of Pseudomonas species on milk lipolysis

Authors

DOI:

https://doi.org/10.3989/gya.0583181

Keywords:

Enzymatic activity, Lipase, Milk lipolysis, Pseudomonas fluorescens, Pseudomonas putida

Abstract


The aim of this study was to evaluate the lipolytic index (LI) of Pseudomonas fluorescens and Pseudomonas putida (2, 5, 6 log CFU/mL) in milk during 96 h by the Lipo R method. The strains were isolated from refrigerated raw milk (30 °C, 48 h), and species were confirmed by PCR, inoculated in reconstituted whole milk, and stored at 2 °C, 4 °C, and 8 °C. The storage time (ST) and temperature were associated with LI of P. putida. The interaction among lipolysis, temperature, and ST occurs even with a low population of P. putida and these variables combined together contributed to about 77% of the free fatty acids (FFA) in milk. The ST, temperature, and population of P. fluorescens showed a significant effect on its LI, and the variables contributed to about 43% of FFA. LI was about 224% higher in milk with P. fluorescens than with P. putida. The reduc-tion in ST and milk temperature resulted in a decrease in lipid lysis and a lower index of FFA by P. putida and P. fluorescens, with P. fluorescens showing a higher lipolytic capacity.

Downloads

Download data is not yet available.

References

Almeida KM, Bruzaroski SR, Zanol D, Melo M, Santos JS, Aragon-Alegro LC, Botaro BG, Santana EHW. 2017. Pseudomonas spp. and P. fluorescens: population in refrigerated raw milk. Ciênc. Rural. 47, 1-6. https://doi.org/10.1590/0103-8478cr20151540

Arcuri EF, Silva PDL, Brito MAVP, Brito JRF, Lange CC, Magalhães MMA. 2008. Counting, isolation and characterization of psychrotrophic bacteria from refrigerated raw milk. Ciênc. Rural. 38, 2250–2255. https://doi.org/10.1590/S0103-84782008000800025

Chen L, Daniel RM, Collbera T. 2003. Detection and impact of protease and lipase activities in milk and milk powders. Int. Dairy J. 13, 255–275. https://doi.org/10.1016/S0958-6946(02)00171-1

Deeth HC, Fitz-Gerald CH. 2006. Lipolytic enzymes and hydrolytic rancidity, in Fox P F., McSweeney PLH (Ed.). Advanced dairy chemistry: lipids. 3rd Springer: New York, p. 481–556. https://doi.org/10.1007/0-387-28813-9_15

Dogan B, Boor KJ. 2003. Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl. Environ. Microbiol. 69, 130–138. https://doi.org/10.1128/AEM.69.1.130-138.2003 PMid:12513987 PMCid:PMC152439

Fonseca P, Moreno R, Rojo F. 2011. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environ. Microbiol. Rep. 3, 329–339. https://doi.org/10.1111/j.1758-2229.2010.00229.x PMid:23761279

Frank JF, Christen GL, Bullerman LB. 1992. Tests for groups of microorganisms, in Marshall RT (Ed) Standard methods for the examination of dairy products. American Public Health Association: New York, p. 837–856.

Kumaresan G, Annalvilli R, Sivakumar K. 2007. Psychrotrophic spoilage of raw milk at different temperatures of storage. J. Appl. Sci. Res. 3, 1383–1387.

Mahieu H. 1984. Methode rapide de dosage dês acides gras libres dans le lait: methode Lipo R. Rec. Méd. Vét. 135, 709–716.

Mahieu H. 1991. Modificaciones de la leche después de su recogida, in Luquet FM (ed) Leche y productos lácteos: la leche de la mama a la lechería, Acribia: Zaragoza. p. 181–226.

Mu Z, Du M, Bai Y. 2009. Purification and properties of a heat-stable enzyme of Pseudomonas fluorescens Rm12 from raw milk. Eur. Food Res. Technol. 228, 725–734. https://doi.org/10.1007/s00217-008-0983-y

Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M. 2015. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int. J. Food Microbiol. 211, 57–65. https://doi.org/10.1016/j.ijfoodmicro.2015.07.001 PMid:26173200

Nu-ez M, Nu-ez JA. 1983. Proteasas de psicrotrofos gram negativos: efectos sobre la leche y los productos lácteos. Revista Espa-ola de Lechería 130, 251–260

Scarpellini M, Franzetti L, Galli A. 2004. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microb. Lett. 236, 257–260. https://doi.org/10.1111/j.1574-6968.2004.tb09655.x PMid:15251205

Spilker T, Coenye T, Vandame P, Lipuma JJ. 2004. PCR-Based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J. Clin. Microb. 42, 2074–2079. https://doi.org/10.1128/JCM.42.5.2074-2079.2004 PMid:15131172 PMCid:PMC404678

Sorhaung T, Stepaniak L. 1997. Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends Food Sci. Technol. 8, 35–37. https://doi.org/10.1016/S0924-2244(97)01006-6

Xin L, Zhaoxu M, Zhang L, Cui Y, Han X, Yi H. 2017. The diversity and proteolytic properties of psychrotrophic bacteria in raw cows' milk from North China. Int. Dairy J. 66, 34–41. https://doi.org/10.1016/j.idairyj.2016.10.014

Wiking L, Björck L, Nielsen JH. 2003. Influence of feed composition on stability of fat globules during pumping of raw milk. Int. Dairy J. 13, 799–803. https://doi.org/10.1016/S0958-6946(03)00110-9

Yamamoto S, Harayama S. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. App. Environ. Microbiol. 61, 1104–1109. PMid:7793912 PMCid:PMC167365

Published

2019-06-30

How to Cite

1.
Pereira FA, Luiz LL, Bruzaroski SR, Poli-Frederico RC, Fagnani R, Santana EH. The effect of cold storage, time and the population of Pseudomonas species on milk lipolysis. Grasas aceites [Internet]. 2019Jun.30 [cited 2024Mar.28];70(2):e300. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1769

Issue

Section

Research