Grasas y Aceites, Vol 70, No 4 (2019)

Monitoring of the enzymatic activity of intracellular lipases of Ustilago maydis expressed during the growth under nitrogen limitation and its correlation in lipolytic reactions


https://doi.org/10.3989/gya.1049182

M. G. Araiza-Villanueva
Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Mexico
orcid http://orcid.org/0000-0002-5904-1048

D. R. Olicón-Hernández
Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología - Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Mexico
orcid http://orcid.org/0000-0002-8148-6393

J. P. Pardo
Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Mexico
orcid http://orcid.org/0000-0001-6108-9705

H. Vázquez-Meza
Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Mexico
orcid http://orcid.org/0000-0002-8312-3115

G. Guerra-Sánchez
Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas, Departamento de Microbiología, Mexico
orcid http://orcid.org/0000-0002-1660-2079

Abstract


Under nitrogen starvation, Ustilago maydis forms lipid droplets (LDs). Although the dynamics of these organelles are known in the literature, the identity of the lipases implicated in their degradation is unknown. We determined lipase activity and identified the intracellular lipases expressed during growth under nitrogen starvation and YPD media by zymograms. The results showed that cytosolic extracts exhibited higher lipase activity when cells were grown in YPD. Under nitrogen starvation, lipase activity was not detected after 24 h of culture, resulting in lipid accumulation in LDs. This suggests that these lipases could be implicated in LD degradation. In the zymogram, two bands, one of 25 and the other of 37 kDa, presented lipase activity. The YPD extracts showed lipase activity in olive and almond oils, which contain triacylglycerols with mono and polyunsaturated fatty acids. This is the first report about U. maydis cytosolic lipases involved in LD degradation.

Keywords


Cytosolic lipases; Fatty acids; Lipid droplets; Lipid droplet index; Nitrogen starvation; Triacylglycerol

Full Text:


HTML PDF XML

References


Athenstaedt K, Daum G. 2003. YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323. https://doi.org/10.1074/jbc.M302577200 PMid:12682047

Athenstaedt K, Daum G. 2005. Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J. Biol. Chem. 280, 37301-37309. https://www.ncbi.nlm.nih.gov/pubmed/16135509 https://doi.org/10.1074/jbc.M507261200 PMid:16135509

Benarouche A, Point V, Carriere F, Cavalier JF. 2014. An interfacial and comparative in vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy. Biochimie 102, 145-153. https://doi.org/10.1016/j.biochi.2014.03.004 PMid:24650780

Berhanu A, Amare G. 2012. Microbial lipases and their industrial applications: Review. Biotechnology 11, 100-118. https://doi.org/10.3923/biotech.2012.100.118

Bermudez B, Lopez S, Ortega A, Varela LM, Pacheco YM, Abia R, Muriana FJG. 2011. Oleic acid in olive oil: from a metabolic framework toward a clinical perspective. Current Pharmaceutical Design 17, 831-843. https://doi.org/10.2174/138161211795428957 PMid:21443481

Bozaquel-Morais BL, Madeira JB, Maya-Monteiro CM, Masuda CA, Montero-Lomeli M. 2010. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS One 5, e13692. https://doi.org/10.1371/journal.pone.0013692 PMid:21060891 PMCid:PMC2965658

Brabcova J, Prchalova D, Demianova Z, Bucankova A, Vogel H, Valterova I, Pichova I, Zarevucka M. 2013. Characterization of neutral lipase BT-1 isolated from the labial gland of Bombus terrestris males. PLoS One 8, e80066. https://doi.org/10.1371/journal.pone.0080066 PMid:24260337 PMCid:PMC3832651

Brundiek H, Sass S, Evitt A, Kourist R, Bornscheuer UT. 2012. The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity. Appl. Microbiol. Biotechnol. 94, 141-150. https://doi.org/10.1007/s00253-012-3903-9 PMid:22294433

Buerth C, Kovacic F, Stock J, Terfruchte M, Wilhelm S, Jaeger KE, Feldbrugge M, Schipper K, Ernst JF, Tielker D. 2014. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity. Appl. Microbiol. Biotechnol. 98, 4963-4973. https://doi.org/10.1007/s00253-013-5493-6 PMid:24469105

Chavan S, Smith SM. 2014. A rapid and efficient method for assessing pathogenicity of Ustilago maydis on maize and teosinte lines. J. Vis. Exp. 83. e50712. https://doi.org/10.3791/50712 PMid:24430201 PMCid:PMC4089420

Fickers P, Marty A, Nicaud JM. 2011. The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv. 29, 632-644. https://doi.org/10.1016/j.biotechadv.2011.04.005 PMid:21550394

Givianrad MH, Saber-Tehrani M, Jafari Mohammadi SA. 2013. Chemical composition of oils from wild almond (Prunus scoparia) and wild pistachio (Pistacia atlantica). Grasas Aceites 64 (1), 77-84. https://doi.org/10.3989/gya.070312

Grillitsch K, Connerth M, Kofeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G. 2011. Lipid particles/ droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim. Biophys. Acta 1811, 1165-1176. https://doi.org/10.1016/j.bbalip.2011.07.015 PMid:21820081 PMCid:PMC3229976

Gupta N, Rathi P, Gupta R. 2002. Simplified para-nitrophenyl palmitate assay for lipases and esterases. Analytical Biochemistry 311, 98-99. https://doi.org/10.1016/S0003-2697(02)00379-2

Kanwar SS, Kaushal RK, Jawed A, Gupta R, Chimni SS. 2005. Methods for inhibition of residual lipase activity in colorimetric assay: a comparative study. Indian J. Biochem. Biophys. 42, 233-237.

Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. 2016. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj Systems Biology and Applications 2, 16005. https://doi.org/10.1038/npjsba.2016.5 PMid:28725468 PMCid:PMC5516929

Klug L, Daum G. 2014. Yeast lipid metabolism at a glance. FEMS Yeast Res. 14, 369-388. https://doi.org/10.1111/1567-1364.12141 PMid:24520995

Kouker G, Jaeger KE. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53, 211-213.

Kumar D, Kumar L, Nagar S, Raina C, Parshad R, Gupta V. 2012. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions Arch. Appl. Sci. Res. 4, 1763-1770.

Li D, Song JZ, Li H, Shan MH, Liang Y, Zhu J, Xie Z. 2015. Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. FEBS Lett. 589, 269-276. https://doi.org/10.1016/j.febslet.2014.11.050 PMid:25500271

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.

Manda NK, Thunuguntla VBSC, Bokka C, Singh BJ. 2017. Ymr210wp leads to the accumulation of phospholipids and steryl esters in yeast. Bioinformation 13, 360-365. https://doi.org/10.6026/97320630013360 PMid:29225428 PMCid:PMC5712780

Ortega A, Varela LM, Bermudez B, Lopez S, Muriana FJG, Abia R. 2012. Nutrigenomics and atherosclerosis: The postprandial and long-term effects of virgin olive oil ingestion, in Parthasarathy S (ed) Atherogenesis. IntechOpen, Shangai, 135-160. https://doi.org/10.5772/26141

Paulino BN, Pessoa MG, Molina G, Kaupert Neto AA, Oliveira JVC, Mano MCR, Pastore GM. 2017. Biotechnological production of value-added compounds by ustilaginomycetous yeasts. Appl. Microbiol. Biotechnol. 101, 7789-7809. https://doi.org/10.1007/s00253-017-8516-x PMid:28921339

Perez D, Martin S, Fernandez-Lorente G, Filice M, Guisan JM, Ventosa A, Garcia MT, Mellado E. 2011. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6, e23325. https://doi.org/10.1371/journal.pone.0023325 PMid:21853111 PMCid:PMC3154438

Rambold AS, Cohen S, Lippincott-Schwartz J. 2015. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678-692. https://doi.org/10.1016/j.devcel.2015.01.029 PMid:25752962 PMCid:PMC4375018

Romero-Aguilar L, Pardo JP, Montero-Lomeli M, Luqueño- Bocardo OI, Juarez Oropeza MA, Guerra Sanchez G. 2017. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch. Microbiol. 199, 1195-1209. https://doi.org/10.1007/s00203-017-1388-8 PMid:28550409

Roncero JM, Álvarez-Ortí M, Pardo-Giménez A, Gómez R, Rabadán A, Pardo JE. 2016. Virgin almond oil: Extraction methods and composition. Grasas Aceites 67, e143. https://doi.org/10.3989/gya.0993152

Saavedra E, Ramos-Casillas LE, Marin-Hernandez A, Moreno- Sanchez R, Guerra-Sanchez G. 2008. Glycolysis in Ustilago maydis. FEMS Yeast Res. 8, 1313-1323. https://doi.org/10.1111/j.1567-1364.2008.00437.x PMid:18803552

Schmidt C, Athenstaedt K, Koch B, Ploier B, Korber M, Zellnig G, Daum G. 2014. Defects in triacylglycerol lipolysis affect synthesis of triacylglycerols and steryl esters in the yeast. Biochim. Biophys. Acta 1842, 1393-1402. https://doi.org/10.1016/j.bbalip.2014.07.001 PMid:25016085

Snellman EA, Sullivan ER, Colwell RR. 2002. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. European Journal of Biochemistry 269, 5771-5779. https://doi.org/10.1046/j.1432-1033.2002.03235.x PMid:12444965

Ugur A, Sarac N, Boran R, Ayaz B, Ceylan O, Okmen G. 2014. New lipase for biodiesel production: Partial purification and pharacterization of LipSB 25-4. ISRN Biochem. 2014, 289749. https://doi.org/10.1155/2014/289749 PMid:25937966 PMCid:PMC4393003

Vingering N, Oseredczuk M, du Chaffaut L, Ireland J, Ledoux M. 2010. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column. OCL 17, 185-192. https://doi.org/10.1051/ocl.2010.0309

Welte MA. 2015. Expanding roles for lipid droplets. Curr. Biol. 25, R470-481. https://doi.org/10.1016/j.cub.2015.04.004 PMid:26035793 PMCid:PMC4452895

Yanty NAM, Marikkar JMN, Long K. 2011. Effect of varietal differences on composition and thermal characteristics of avocado oil. J.A.O.C.S. 88, 1997-2003. https://doi.org/10.1007/s11746-011-1877-x

Zavala-Moreno A, Arreguin-Espinosa R, Pardo JP, Romero- Aguilar L, Guerra-Sánchez G. 2014. Nitrogen source affects glycolipid production and lipid accumulation in the phytopathogen fungus Ustilago maydis. Advances in Microbiology 4, 934-944. https://doi.org/10.4236/aim.2014.413104

Zhu Z, Ding Y, Gong Z, Yang L, Zhang S, Zhang C, Lin X, Shen H, Zou H, Xie Z, Yang F, Zhao X, Liu P, Zhao ZK. 2015. Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides. Eukaryot Cell 14, 252-264. https://doi.org/10.1128/EC.00141-14 PMid:25576482 PMCid:PMC4346559




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es