Grasas y Aceites, Vol 70, No 4 (2019)

Valorization of a high-acidity residual oil generated in the waste cooking oils recycling industries


https://doi.org/10.3989/gya.1179182

P. Álvarez-Mateos
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0001-9225-219X

J. F. García-Martín
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0002-4582-560X

F. J. Guerrero-Vacas
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0001-9741-0775

C. Naranjo-Calderón
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0002-9671-802X

C. C. Barrios-Sánchez
Environmental Department, Research Centre for Energy, Environment and Technology (CIEMAT), Spain
orcid http://orcid.org/0000-0002-6462-6219

M. C. Pérez-Camino
Instituto de la Grasa, CSIC, Spain
orcid http://orcid.org/0000-0001-7652-9582

Abstract


A sludge fraction is obtained from the industries which recycle cooking oil and this sludge contains a large amount of oil with an extremely high acidity ( > 60%). In this work, we propose a scheme for methyl ester production from this residual oil consisting of the esterification of the free fatty acids followed by the transesterification of the remaining triglycerides. Esterifications were carried out with different methanol:oil molar ratios, and various catalysts in different weight ratios. The results revealed that homogeneous catalysts produced higher yields than heterogeneous ones in the esterification reaction. With the aim of improving the process, a previous triglyceride hydrolysis was assayed using lipases from Candida rugosa. Finally, the 3-stage process was performed under the most favorable conditions for each stage obtaining 84% wt. fatty acid methyl esters, which shows the potential of this residual oil as a source of biodiesel.

Keywords


Acidity; Biodiesel; Esterification; Methyl esters; Waste-cooking oil

Full Text:


HTML PDF XML

References


Álvarez-Mateos P, Alés-Álvarez FJ, García-Martín JF. 2019. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. J. Environ. Manag. 231, 886-895. https://doi.org/10.1016/j.jenvman.2018.10.052 PMid:30419444

Bastidas M, Buelvas LM, Marquez MI, Rodriguez K. 2010 Producción de carbón activado a partir de precursores carbonosos del Departamento del Cesar, Colombia. Inf. Tecnol. 21, 87-96. https://doi.org/10.4067/S0718-07642010000300010

Borges ME, Díaz L. 2012. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sust. Ener. Rev. 16, 2839-2849. https://doi.org/10.1016/j.rser.2012.01.071

Botton V, Piovan L, Meir HF, Mitchell DA, Cordova J, Kriege N. 2018. Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse. Bioprocess Biosyst. Eng. 41, 573-583. https://doi.org/10.1007/s00449-018-1892-5 PMid:29353453

Chai M, Tu Q, Lu M, Yang YJ. 2014. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process. Technol. 125, 106-113. https://doi.org/10.1016/j.fuproc.2014.03.025

Chowdhury A, Sarkar D, Mitra D. 2016. Esterification of Free Fatty Acids Derived from Waste Cooking Oil with Octanol: Process Optimization and Kinetic Modeling. Chem. Eng. Technol. 39, 730-740. https://doi.org/10.1002/ceat.201400745

Cvengro? J, Cvengro?ová Z. 2004. Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass Bioeng. 27, 173-181. https://doi.org/10.1016/j.biombioe.2003.11.006

García-Martín JF, Barios CC, Alés-Álvarez FJ, Domínguez- Sáez A, Álvarez-Mateos P. 2018. Biodiesel production from waste cooking oil in an oscillatory flow reactor. Performance as a fuel on a TDI diesel engine. Renew. Ener. 125 546-556. https://doi.org/10.1016/j.renene.2018.03.002

García-Martín JF, Alés-Álvarez FJ, López-Barrera MC, Martín-Domínguez I, Álvarez-Mateos P. 2019. Cetane number prediction of waste cooking oil-derived biodiesel prior to transesterification reaction using near infrared spectroscopy. Fuel 240, 10-15. https://doi.org/10.1016/j.fuel.2018.11.142

García-Martín JF, Alés-Álvarez FJ, Torres-García M, Feng CH, Álvarez-Mateos P. 2019. Production of oxygenated fuel additives from residual glycerine using biocatalysts from heavy-metal-contaminated Jatropha curcas L. roots. Energies 12 (4), 740. https://doi.org/10.3390/en12040740

García Martín JF, López Barrera MC, Torres García M, Zhang QA, Álvarez Mateos P. 2019. Determination of the acidity of waste cooking oils by near infrared spectroscopy. Processes 7 (5), 304. https://doi.org/10.3390/pr7050304

González I, González JA. 2015. Aceites usados de cocina. Problemática ambiental, incidencias en redes de saneamiento y coste del tratamiento en depuradoras. Aguas Resid. Inf. 1-8. Available at: http://www.aguasresiduales. info/revista/articulos/problematica-ambiental-incidencias-en-redes-de-saneamiento-y-coste-del-tratamiento-en-depuradoras-de-los-aceites-usados-en-cocina.

Hidayat A, Rochmadi, Wijaya K, Nurdiawati A, Kurniawan W, Hinode H, Yoshikawa K, Budiman A. 2015. Esterification of palm fatty acid distillate with high amount of free fatty acids using coconut shell char based catalyst. Energy Proced. 75, 969-974. https://doi.org/10.1016/j.egypro.2015.07.301

Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T. 2012. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 190, 122-132. https://doi.org/10.1016/j.cattod.2012.02.006

Leung DYC, Guo Y. 2006. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Tech. 87, 883-890. https://doi.org/10.1016/j.fuproc.2006.06.003

Marchetti JM, Errazu AF. 2008. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass Bioen. 32, 892-895. https://doi.org/10.1016/j.biombioe.2008.01.001

Ministerio de Agricultura y Pesca Alimentacion y Medio Ambiente. 2017. Informe del consumo de alimentación en España 2016', p. 242.

Mittelbach M, Enzelsberger H. 1999. Transesterification of heated rapeseed oil for extending diesel fuel. J. Am. Oil Chem. Soc. 76, 545-550. https://doi.org/10.1007/s11746-999-0002-x

Nawar WW. 1984. Chemical Changes in Lipids Produced by Thermal Processing. J. Chem. Educ. 61, 299-302. https://doi.org/10.1021/ed061p299

Özbay N, Oktar N, Tapan NA. 2008. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel 87, 1789-1798. https://doi.org/10.1016/j.fuel.2007.12.010

Pereda Marín J, Barriga Mateos F, Álvarez Mateos P. 2003. Aprovechamiento de las oleinas residuales procedentes del proceso de refinado de los aceites vegetales comestibles, para la fabricación de biodiesel. Grasas Aceites 54 (2), 130-137. https://doi.org/10.3989/gya.2003.v54.i2.255

Sánchez-Gimeno AC, Benito M, Vercet A, Oria R. 2008. Aceite de oliva virgen extra del Somontano: evaluación de las modificaciones físico-químicas tras la fritura doméstica de patatas prefritas congeladas. Grasas Aceites 59, 57-61. https://doi.org/10.3989/gya.2008.v59.i1.491

Uribe LM, López ME, Gonzáles AG. 2013. Activación de carbón mineral mediante proceso físico en horno tubular horizontal y atmósfera inerte. Rev. Colombiana Material. 4, 93-108.

Vitiello R, Li C, Russo V, Tesser R, Turco R, Di Serio M. 2017. Catalysis for esterification reactions: a key step in the biodiesel production from waste oils. Rend. Fis. Acc. Lincei, 28, 117-123. https://doi.org/10.1007/s12210-016-0570-2




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es