Grasas y Aceites, Vol 70, No 4 (2019)

Composition, properties, stability and thermal behavior of tamarind (Tamarindus indica) seed oil


https://doi.org/10.3989/gya.0928182

M. G. Chacón-Fernández
Instituto de Ciencias Básicas, Universidad Veracruzana., Mexico
orcid http://orcid.org/0000-0003-2941-3346

M. R. Hernández-Medel
Instituto de Ciencias Básicas, Universidad Veracruzana, Mexico
orcid http://orcid.org/0000-0002-5800-7825

M. Bernal-González
Facultad de Química, UNAM, Mexico
orcid http://orcid.org/0000-0002-4610-1945

M. C. Durán-Domínguez-de-Bazúa
Facultad de Química, UNAM, Mexico
orcid http://orcid.org/0000-0001-9509-908X

J. A. Solís-Fuentes
Instituto de Ciencias Básicas, Universidad Veracruzana, Mexico
orcid http://orcid.org/0000-0002-3974-8812

Abstract


The composition, thermal stability and phase behavior of tamarind (Tamarindus indica) seed oil were analyzed to contribute to the exploration of their potential uses. The oil was extracted from the kernel of the tamarind seed with hexane, and its main physical, chemical and thermal properties were analyzed by infrared spectrometry, gas chromatography-mass spectrometry, DSC, and TGA. The results showed that the tamarind seed had a 3.76 ± 0.20% oil with a saponification index of 174.80 ± 9.87 mg KOH/g and the major fatty acids were lignoceric (20.15%), oleic (18.99%) and palmitic (11.99%). Stearic, behenic, linoleic, arachidic, and other fatty acids were also present. TGA and DSC showed that in an inert atmosphere, the triacylglycerols of tamarind seed oil (TSO) are decomposed in a single stage that starts at 224.1 °C and in an air atmosphere in three stages, initiating its decomposition at 218 °C. The TSO showed crystallization and fusion curves with a single maximum peak with Tonset and Toffset of 20.16 and ?38.8 °C and ?22.2 and 28.6 °C, respectively. The solid fat profile of the oil showed a semi-solid and liquid consistency in the ambient temperature range. The composition, thermal and phase behavior showed that TSO is potentially useful for alimentary, pharmacological, and cosmetological purposes.

Keywords


Lignoceric acid; Tamarind seed oil; Tamarindus indica; TGA

Full Text:


HTML PDF XML

References


Adewuyi A, Oderinde RA, Rao BVSK, Prasad RBN, Nalla M. 2011. Proximate analysis of the seeds and chemical composition of the oils of Albizia saman, Millettia griffonianus and Tamarindus indica from Nigeria. Annals: Food Sci. Technol. 12, 123-129.

Ajayi IA, Oderinde RA, Kajogbola DO, Uponi JI. 2006. Oil content and fatty acid composition of some underutilized legumes from Nigeria. Food Chem. 99, 115-120. https://doi.org/10.1016/j.foodchem.2005.06.045

Akhtar KA, Bokadia MM, Mehta BK, Batra KA. 1986. Chemical characterization and antimicrobial activity of some seed oils of Cruciferae family. Grasas Aceites 37, 148-151.

Andriamanantena RW, Artaud J, Gaydou EM, Iatrides MC, Chevalier JL. 1983. Fatty acid and sterol compositions of malagasy tamarind kernel oils. J. Am. Oil Chem. Soc. 60, 1318-1321. https://doi.org/10.1007/BF02702108

Anu SJ, Rao JM. 2001. Oxanthrone esters from the aerial parts of Cassia kleinii. Phytochemistry 57, 583-585. https://doi.org/10.1016/S0031-9422(01)00114-5

Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai G, Jain AP. 2011. Tamarindus indica: Extent of explored potential. Pharmacogn. Rev. 5, 73-81. https://doi.org/10.4103/0973-7847.79102 PMid:22096321 PMCid:PMC3210002

Borugadda VB, Goud VV. 2014. Thermal, oxidative and low temperature properties of methyl esters prepared from oils of different fatty acids composition: A comparative study. Thermochim. Acta 577, 33-40. https://doi.org/10.1016/j.tca.2013.12.008

Caluwé E de, Halamová K, Van Damme P. 2010. Tamarindus indica L.: A review of traditional uses, phytochemistry and pharmacology. Afrika Focus 23, 53-83. https://doi.org/10.21825/af.v23i1.5039

El-Siddig K, Gunasena HPM, Prasa BA, Pushpakumara DKNG, Ramana KVR, Vijayanand P, Williams JT. 2006. Tamarind - Tamarindus indica L. Fruits for the future. 1. Southampton Centre for Underutilized Crops, Southampton, U.K, 188 p.

Fretts AM, Mozaffarian D, Siscovick DS, Djousse L, Heckbert SR, King IB, McKnight B, Sitlani C, Sacks FM, Song X, Sotoodehnia N, Spiegelmann D, Wallace ER, Lemaitre RN. 2014. Plasma phospholipid saturated fatty acids and incident atrial fibrillation: The cardiovascular health study. J. Am. Heart Assoc. 3, 1-10. https://doi.org/10.1161/JAHA.114.000889 PMid:24970268 PMCid:PMC4309088

Hondelmann W, Radatz W. 1982. Fatty-acids in seed-oils of European wild plants-a starting-point for developing industrial crops? Fett Wiss. Technol. 84, 73-75. https://doi.org/10.1002/lipi.19820840207

Horwitz W. 1995. Official methods of analysis of the Association of Official Analytical Chemists. AOAC Washington DC, US.

Kumar CS, Bhattacharya S. 2008. Tamarind seed: Properties, processing and utilization. Crit. Rev. Food Sci. 48, 1-20. https://doi.org/10.1080/10408390600948600 PMid:18274963

Lambelet P, Raemy A. 1983. Iso-solid diagrams of fat blends from thermal analysis data. J. Am. Oil Chem. Soc. 60, 845-847. https://doi.org/10.1007/BF02787442

Lemaitre RN, King IB, Rice K, McKnight B, Sotoodehnia N, Rea TD, Johnson CO, Raghunathan TE, Cobb LA, Mozaffarian D, Siscovick DS. 2014. Erythrocyte very long-chain saturated fatty acids associated with lower risk of incident sudden cardiac arrest. Prostag. Leukotr. Ess. 91, 149-153. https://doi.org/10.1016/j.plefa.2014.07.010 PMid:25107579 PMCid:PMC4156887

Lemaitre RN, Fretts AM, Sitlani CM, Biggs ML, Mukamal K, King IB, Song X, Djoussé L, Siscovick DS, McKnigth B, Sotoodehnia N, Kizer JR, Mozaffarian D. 2015. Plasma phospholipid very-long-chain saturated fatty acids and incident diabetes in older adults: The cardiovascular health study. Am. J. Clin. Nutr. 101, 1047-1054. https://doi.org/10.3945/ajcn.114.101857 PMid:25787996 PMCid:PMC4409688

Melzer M, Blin J, Bensakhria A, Valette J, Broust F. 2013. Pyrolysis of extractive rich agroindustrial residues. J. Anal. Appl. Pyrol. 104, 448-460. https://doi.org/10.1016/j.jaap.2013.05.027

Morad MM, El Magoli SB, Sedky KA. 1978. Physicochemical properties of Egyptian tamarind seed oil. Fett Wiss. Technol. 80, 357- 359. https://doi.org/10.1002/lipi.19780800906

O'Brien RD. 2008. Fats and oils: formulating and processing for applications. CRC press. https://doi.org/10.1201/9781420061673

OriginLab. 2007. Origin Pro 8 SRO. OriginLab Corporation. Northampton, MA, US.

Pitke PM, Singh PP, Srivastava HC. 1977. Fatty acid composition of Tamarind kernel oil. J. Am. Oil Chem. Soc. 54, 592-592. https://doi.org/10.1007/BF03027644

Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA. 2010. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51, 3299-3305. https://doi.org/10.1194/jlr.M009449 PMid:20671299 PMCid:PMC2952570

Rabelo SN, Ferraz VP, Oliveira LS, Franca AS. 2015. FTIR analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. Int. J. Environment. Sci. Develop.6, 964-969. https://doi.org/10.7763/IJESD.2015.V6.730

Rao AS, Kumar AA, Ramana MV. 2015. Tamarind seed processing and by-products. Agric. Eng. Int.: CIGR J. 17, 200-204.

Rasala TM, Kale VV, Lohiya GK, Moharir KS, Ittadwar AM, Awari JG. 2011. Chemistry and pharmaceutical applications of excipients derived from tamarind. Asian J. Chem. 23, 1421-1423.

Reddy SG, Rao JMS, Achyuta Ramayya D, Azeemoddin G, Rao TSD.1979. Extraction, characteristics and fatty acid composition of tamarind kernel oil. J. Oil Technol. Assoc. India. 11, 91-93.

Roos YH, 2016. Phase transitions in foods. Academic Press.

Sahle FF, Gebre-Mariam T, Dobner B, Wohlrab J, Neubert RH. 2015. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol. Physiol. 28, 42-55. https://doi.org/10.1159/000360009 PMid:25196193

Shahidi F, Wanasundara PKJPD. 2002. Extraction and analysis of lipids. In: Food Lipids, Chemistry, Nutrition, and Biotechnology. Marcel Dekker, Inc. NY. US. https://doi.org/10.1201/9780203908815.ch5

Santos JCO, Santos IMG, Conceiç?o MM, Porto SL, Trindade MFS, Souza AG, Prassad S, Fernandez VJ, Araújo A. 2004. Thermoanalytical, kinetic and rheological parameters of commercial edible vegetable oils. J. Therm. Anal. Calorim. 75, 419-428. https://doi.org/10.1023/B:JTAN.0000027128.62480.db

Solís-Fuentes J, Ayala-Tirado RA, Fernández-Suárez AF, Durán-de Bazúa MC. 2015. Mamey sapote seed oil (Pouteria sapota). Potential, composition, fractionation and thermal behavior. Grasas Aceites 66 (1), e056. https://doi.org/10.3989/gya.0691141

Spitzer V, Marx F, Maia JGS, Pfeilsticker K. 1990. Curupira tefeensis (Olacaceae) - A rich source of very long-chain fatty-acids. Fett Wiss. Technol. 92, 165-168. https://doi.org/10.1002/lipi.19900920410

Sultana R, Gulzar T. 2012. Proximate analysis of Adenanthera pavonina L. seed oil, a source of lignoceric acid grown in Pakistan. J. Am. Oil Chem. Soc. 89, 1611-1618. https://doi.org/10.1007/s11746-012-2073-3

Tan CP, Che Man YB. 2000. Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition. J. Am. Oil Chem. Soc.77, 143-155. https://doi.org/10.1007/s11746-000-0024-6




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es