Grasas y Aceites, Vol 71, No 1 (2020)

Biologically active components and health benefits of nettle seed oil


https://doi.org/10.3989/gya.0108191

Zh. Y. Petkova
University of Plovdiv ‘Paisii Hilendarski’, Department of Chemical Technology, Bulgaria
orcid https://orcid.org/0000-0001-7798-9687

G. A. Antova
University of Plovdiv ‘Paisii Hilendarski’, Department of Chemical Technology, Bulgaria
orcid https://orcid.org/0000-0002-6660-4531

M. Y. Angelova-Romova
University of Plovdiv ‘Paisii Hilendarski’, Department of Chemical Technology, Bulgaria
orcid https://orcid.org/0000-0003-4704-8039

Abstract


The biologically active components of nettle seed oil and important lipid indices, which are criteria for the health benefits of the oil, have been examined. Linoleic acid predominates in triacylglycerols (77.7%), followed by oleic (16.2%). Sterols in the lipids are present at 1.1% and β-sitosterol is the main component (90.1%). The oil contains 711 mg/kg tocopherols and γ-tocopherol predominates (36.1%), followed by α-tocopherol (28.9%) and δ-tocopherol (26.9%). Atherogenicity and thrombogenicity index values are significantly low, which determine the best anti-atherogenic and anti-thrombogenic properties of the oil. The cholesterolemic index and the ratio of polyunsaturated and saturated fatty acids are considerably higher than 1.0 and reveal good hypocholesterolemic potential and nutritional value. The content of biologically active components of nettle seed oil indicates that it is a rich source of essential fatty acids, sterols and tocopherols and this oil can be used in food, cosmetics, and pharmaceutical products.

Keywords


Atherogenicity; Biologically active components; Cholesterolemic index; Health benefits; Nettle seed oil; Thrombogenicity

Full Text:


HTML PDF XML

References


Barter P, Gotto A, La Rosa JC, Maroni J, Szarek M, Grundy SM, Kastelein JJP, Bittner V, Fruchart JC. 2007. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med. 357, 1301-1310. https://doi.org/10.1056/NEJMoa064278 PMid:17898099

Bonanorme A, Grundy SM. 1988. Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N. Engl. J. Med. 318, 1244-1248. https://doi.org/10.1056/NEJM198805123181905 PMid:3362176

Bubalo MC, Vidovi? S, Redovnikovi? IR, Joki? S. 2018. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 109, 52-73. https://doi.org/10.1016/j.fbp.2018.03.001

Codex Stan 210 - 1999. Codex standard for named vegetable oils. Revisions 2001, 2003, 2009. Amendment 2005, 2011.

Cottin SC, Sander TA, Hall WL. 2011. The differential effects of EPA and DHA on cardiovascular risk factors. Proc. Nutr. Soc. 70, 215-231. https://doi.org/10.1017/S0029665111000061 PMid:21349231

DeFelice SL. 1992. Nutraceuticals: Opportunities in an emerging market. Scrip. Mag. 9, 14-15.

Di Virgilio N, Papazoglou EG, Jankauskiene Z, Di Lonardo S, Praczyk M, Wielgusz K. 2015. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crops Prod. 68, 42-49. https://doi.org/10.1016/j.indcrop.2014.08.012

Guil-Guerrero JL, Rebolloso-Fuentes MM, Isasa MET. 2003. Fatty acids and carotenoids from Stinging Nettle (Urtica dioica L.). J. Food Compost. Anal. 16, 111-119. https://doi.org/10.1016/S0889-1575(02)00172-2

Hooper L, Thompson R, Harrison R, Summerbell C, Ness A, Moore H, Worthington H, Durrington P, Higgins J, Capps N, Riemersma R, Ebrahim S, Smith G. 2006. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. Br. Med. J. 332, 752-760. https://doi.org/10.1136/bmj.38755.366331.2F PMid:16565093 PMCid:PMC1420708

ISO 12228-1:2014. Part 1: Animal and vegetable fats and oils. Determination of individual and total sterols contents. Gas chromatographic method.

ISO 12966-1:2014. Animal and vegetable fats and oils. Gas chromatography of fatty acid methyl esters - Part 1: Guidelines on modern gas chromatography of fatty acid methyl esters.

ISO 12966-2:2017. Animal and vegetable fat and oils. Gas chromatography of fatty acid methyl esters - Part 2: Preparation of methyl esters of fatty acids.

ISO 18609:2000. Animal and vegetable fats and oils. Determination of unsaponifiable matter. Method using hexane extraction.

ISO 9936:2016. Animal and vegetable fats and oils. Determination of tocopherol and tocotrienol contents by high-performance liquid chromatography.

Ivanov S, Bitcheva P, Konova B. 1972. Méthode de détermination chromatographyque et colorimétrique des phytosterols dans les huiles végétales et les concentres steroliques [Chromatographic and colorimetric method for phytosterols determination in vegetable oils and in sterol concentrates]. Rev. Franc. Corps. Gras. 19, 177-180.

Kamyab S, Zamani A, Mahasti P, Zojaji M. 2015. Evaluation of physicochemical properties of nettle leaf oil. J. Food Biosci. Technol. 5, 77-86.

Kang MJ, Shin MS, Park JN, Lee SS. 2005. The effects of polyunsaturated: saturated fatty acids ratios and peroxidizability index values of dietary fats on serum lipid profiles and hepatic enzyme activities in rats. Br. J. Nutr. 94, 526-532. https://doi.org/10.1079/BJN20051523 PMid:16197576

Lobo V, Patil A, Phatak A, Chandra N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4, 118-126. https://doi.org/10.4103/0973-7847.70902 PMid:22228951 PMCid:PMC3249911

Misajel A, Carolina K. 2017. Comparación del perfil de ácidos del aceite de chía (Salvia hispánica L.) orgánica y convencional (variedades blanca y negra) cultivadas en el Perú, como una alternativa para aceites vegetales comestibles, Bachelor Thesis, Universidad Peruana de Ciencias Aplicadas (UPC). http://hdl.handle.net/10757/621861

Munné-Bosch S, Alegre L. 2002. The function of tocopherols and tocotrienols in plants. CRC Crit. Rev. Plant Sci. 21, 31-57. https://doi.org/10.1080/0735-260291044179

Popova V, Petkova Zh, Ivanova T, Stoyanova M, Lazarov L, Stoyanova A, Hristeva T, Docheva M, Nikolova V, Nikolov N, Zheljazkov VD. 2018. Biologically active components in seeds of three Nicotiana species. Ind. Crops Prod. 117, 375-381. https://doi.org/10.1016/j.indcrop.2018.03.020

Rafajlovska V, Rizova V, Djarmati Z, Tesevic V, Cvetkov L. 2001. Contents of fatty acids in stinging nettle extracts (Urtica dioica L.) obtained by supercritical carbon dioxide. Acta Pharm. 51, 45-51.

Santos-Silva J, Bessa RJB, Santos-Silva F. 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: fatty and composition of meat. Livest. Prod. Sci. 77, 187-194. https://doi.org/10.1016/S0301-6226(02)00059-3

Simopoulos AP. 2000. Human requirement for n-3 polyunsaturated fatty acids. Poult. Sci. 79, 961-970. https://doi.org/10.1093/ps/79.7.961 PMid:10901194

Ulbricht T, Southgate D. 1991. Coronary heart disease: seven dietary factors. Lancet 338, 985-992. https://doi.org/10.1016/0140-6736(91)91846-M

Uluata S, Özdemir N. 2012. Antioxidant activities and oxidative stability of some unconvential oilseeds. J. Am. Oil Chem. Soc. 89, 551-559. https://doi.org/10.1007/s11746-011-1955-0 PMid:22467958 PMCid:PMC3311859




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es