Determination of functional compounds in blue shark (Prionace glauca) liver oil obtained by green technology

Authors

  • D. N. Santos Laboratório de Tecnologia de Alta Pressão e Produtos Naturais (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo https://orcid.org/0000-0002-7062-3049
  • F. S. Silva Laboratório de Tecnologia de Alta Pressão e Produtos Naturais (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo https://orcid.org/0000-0001-5074-9325
  • A. B. Verde Laboratório de Tecnologia de Alta Pressão e Produtos Naturais (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo https://orcid.org/0000-0001-8096-8203
  • G. M. Bittencourt Laboratório de Tecnologia de Alta Pressão e Produtos Naturais (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo https://orcid.org/0000-0001-6863-1077
  • A. L. de Oliveira Laboratório de Tecnologia de Alta Pressão e Produtos Naturais (LTAPPN), Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo https://orcid.org/0000-0002-2977-6000

DOI:

https://doi.org/10.3989/gya.0450191

Keywords:

Blue shark, Squalene, Supercritical extraction, Vitamin A

Abstract


The objectives of this research were to obtain blue shark liver oil using supercritical CO2 and to characterize the physicochemical parameters of the oil, and the contents of squalene and vitamin A. Supercritical extractions were performed at 50 and 60 °C and pressures from 100 to 300 bar. The oil yield obtained was up to 60% and presented a profile equivalent to that of refined oils for density (0.920 – 0.922 g/mL); viscosity (52.55 – 56.47 Pas.s); refractive index (1.4760 – 1.4785); acid value (1.13 – 2.22% oleic acid); peroxides (10.47 – 24.04 meq of active O2 /kg of oil); saponification value (171.37 – 556.03 mg KOH/g oil), and iodine value (120.05 – 149.21g I2 /100g oil). The fatty acid profile indicated a majority of unsaturated fatty acids. High levels of squalene and vitamin A corroborate the high nutritional quality of this oil from an underexploited by-product with great processing potential.

Downloads

Download data is not yet available.

References

Abreu DAP, Losada PP, Maroto J, Cruz JM. 2011. Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innov. Food Sci. Emerg. Technol. 12, 50-55. https://doi.org/10.1016/j.ifset.2010.12.006

Ahmed S, Elraies KA, Forooozesh J, Shafian SRBM, Hashmet MR, Hsia ICC, Almansour A. 2017. Experimental investi­gation of immiscible supercritical carbon dioxide foam rhe­ology for improved oil recovery. J. Earth Sci. 28, 835-841. https://doi.org/10.1007/s12583-017-0803-z

Anschau V, Iaguer F. 2011. Avaliação da taxa de peroxidação lipídica em ratos suplementados com óleo de peixe e óleo de fígado de tubarão. Unoesc. & Ciência - ACHS 2, 1 17-30.

Alves LMF, Nunes M, Marchand P, Le Bizec B, Mendes S, Correia JPS, Lemos MFL, Novais SC. 2016. Blue sharks (Prionace glauca) as bioindicators of pollution and health in the Atlantic Ocean: Contamination levels and bio­chemical stress responses. Sci. Total Environ. 563, 282-292. https://doi.org/10.1016/j.scitotenv.2016.04.085 PMid:27139301

AOAC. 2005. Official Methods of Analysis of AOAC INTERNATIONAL. 18th Ed., AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Method 991.39.

AOAC. 2005. Official Methods of Analysis of AOAC INTERNATIONAL. 18th Ed., AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Method 996.05.

Bakes MJ, Nichols PD. 1995. Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern Australian waters. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 110, 267-275. https://doi.org/10.1016/0305-0491(94)00083-7

Ballantyne JS. 1997. Jaws: The Inside Story. The Metabolism of Elasmobranch Fishes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118, 703-742. https://doi.org/10.1016/S0305-0491(97)00272-1

Bartfai E, Orsière T, Duffaud F, Villani P, Pompili J, Botta A. 2000. Etude de l'effet genotoxique des huiles hépatiques brutes de trois espèces de requins méditerranéens par application du test de numération des micronoyaux dans les lymphocytes T humains. Ann. Biol. Clin. 58, 595-600.

Batista I, Nunes ML. 1992. Characterization of shark liver oils. Fish Res. 14, 329-334. https://doi.org/10.1016/0165-7836(92)90041-Q

Boran G, Karaçam H, Boran M. 2006. Changes in the quality of fish oils due to storage temperature and time. Food Chem. 98, 693-698. https://doi.org/10.1016/j.foodchem.2005.06.041

Bornatowski H, Schwingel PA. 2008. Alimentação e reprodução do tubarão-azul, Prionace glauca (LINNAEUS, 1758), capturado na costa Sudeste e Sul do Brasil. Arquivos de Ciências do Mar, Fortaleza 41, 98-103.

BRASIL. Agência Nacional de Vigilância Sanitária. Portaria n° 19, de 15 de março de 1995. Norma técnica para comple­mento nutricional. Diário Oficial de União, 16 de março de 1995.

BRASIL. Agência Nacional de Vigilância Sanitária. Resolução RDC n° 269, de 22 de setembro de 2005. O regulamento técnico sobre a ingestão diária recomendada (IDR) de pro­teína, vitaminas e minerais. Diário Oficial da União, 23 de setembro de 2005.

Brunner G, Saure C, Buss D. 2009. Phase equilibrium of hydro­gen, carbon dioxide, squalene, and squalane. J. Chem. Eng. Data 54, 1598-1609. https://doi.org/10.1021/je800926z

Canciam CA. 2010. Efeito da temperatura na viscosidade de óleos vegetais refinados. Publicatio UEPG: Ciências Exatas e da Terra 16, 07-12. https://doi.org/10.5212/Plubl.Exatas.v.16il.0001

Cho Y, Kim T, Gil B. 2013. Correlation between refractive index of vegetable oils measured with surface plasmon resonance and acid values determined with the AOCS official method. Food Sc. Technol. 53, 517-521. https://doi.org/10.1016/j.lwt.2013.03.016

Corrêa APA, Peixoto CA, Gonçalves LAG, Cabral FA. 2008. Fractionation of fish oil with supercritical carbon diox­ide. J. Food Eng. 88, 381-387. https://doi.org/10.1016/j.jfoodeng.2008.02.025

European Food Safety Authority (EFSA) 2010. Scientific Opinion on Fish Oil for Human Comsumption. Food Hygiene, including Rancididy. Panel on Biological Hazards (BIOHAZ). EFSAJ. 8, 10, 1874-1922. https://doi.org/10.2903/j.efsa.2010.1874

European Pharmacopoeia. Cod-liver oil (type A). 2004. 5.ed.pdf Accessed 12/10/2014.

FAO. Food and Agriculture Organization. Codex Alimentarius Comission. In: Joint FAO/WHO Food Standards Programme Codex Commitee On Fats And Oils. 23. 2013. Langkawi, Malaysia. Proceedings. Rome, Italy, 2013. 12 p.

Fernández Ó, Vázquez L, Reglero G, Torres CF. 2013. Discrimination against diacylglycerol ethers in lipase-catalysed ethanolysis of shark liver oil. Food Chem. 36, 464-471. https://doi.org/10.1016/j.foodchem.2012.08.004 PMid:23122085

Ferrari CKB. 1998. Oxidação lipídica em alimentos e sistemas biológicos: mecanismos gerais e implicações nutricionais e patológicas. Rev. Nutr. 11, 3-14. https://doi.org/10.1590/S1415-52731998000100001

Firestone D. ed. 2006. Physical and Chemical Characteristics of Oils, Fats, and Waxes. 2nd Ed. Washington: AOCS Press. 237p.

Fournier V, Destaillats F, Hug B, Golay PA, Joffre F, Juaneda P, Semon E, Dionisi F, Lambelet P, Sébédio JL, Berdeaux O. 2007. Quantification of eicosapentaenoic and doco­sahexaenoic acid geometrical isomers formed during fish oil deodorization by gas-liquid chromatography. J. Chromatogr. A 1154, 353-359. https://doi.org/10.1016/j.chroma.2007.03.099 PMid:17449039

García E, Gutierrez S, Nolasco H, Carreon L, Arjona O. 2006. Lipid composition of shark liver oil: effects of emulsifying and microencapsulation processes. Eur. Food Res. Technol. 222, 697-701. https://doi.org/10.1007/s00217-005-0129-4

García-Moreno PJ, Khanum M, Guadix A, Guadix EM. 2014. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Res. Int. 65, 469-476. https://doi.org/10.1016/j.foodres.2014.03.061

Gava AJ. 2009. Princípios da Tecnologia de Alimentos. São Paulo: Nobel. 512p.

Gedi MA, Bakar J, Mariod AA. 2015. Optimization of supercrit­ical carbon dioxide (CO2) extraction of sardine (Sardinella lemuru Bleeker) oil using response surface methodology (RSM). Grasas Aceites 66, e074. https://doi.org/10.3989/gya.0824142

Gironi F, Maschietti M. 2006. Separation of fish oils ethyl esters by means of supercritical carbon dioxide: Thermodynamic anal­ysis and process modelling. Chem. Eng. Sci. 61, 5114-5126. https://doi.org/10.1016/j.ces.2006.03.041

Hajimoradi M, Hassan ZM, Pourfathollah AA, Daneshmandi S, Pakravan N. 2009. The effect of shark liver oil on the tumor infiltrating lymphocytes and cytokine pattern in mice. J. Ethnopharmacol. 126, 565-570. https://doi.org/10.1016/j.jep.2009.05.033 PMid:19505554

Hernández-Pérez M, Gallego RMR, Carlos MLG. 2002. Sex difference in liver-oil concentration in the deep-sea shark, Centroscymnus coelolepis. Marine and Freshwater Research 53, 883-886. https://doi.org/10.1071/MF01035

Igwe IO. 2004. The effects of temperature on the viscosity of vegetable oils in solution. Industrial Crops and Products 19, 185-190. https://doi.org/10.1016/j.indcrop.2003.09.006

Ivanovs K, Blumberga D. 2017. Extraction of fish oil using green extraction methods: a short review. Energy Procedia 128, 477-483. https://doi.org/10.1016/j.egypro.2017.09.033

Jayasinghe C, Gotoh N, Wada S. 2012. Regiospecific Analysis of Shark Liver Triacylglycerols. J. Am. Oil Chem. Soc. 89, 1873-1884. https://doi.org/10.1007/s11746-012-2081-3

Johannsen M, Brunner G. 1997. Solubilities of the Fat-Soluble Vitamins A, D, E, and K in Supercritical Carbon Dioxide. J. Chem. Eng. Data 42, 106-111. https://doi.org/10.1021/je960219m

Kang SJ, Timmins MCA, Ackman RG. 1998. Similarities in the Lipid Class Profiles of Oils from Atlantic and Pacific Dogfish Livers. J. Am. Oil Chem. Soc. 75, 1667-1672. https://doi.org/10.1007/s11746-998-0109-5

Lisichkov K, Kuvendziev S, Zeković Z, Marinkovski M. 2014. Influence of operating parameters on the supercritical carbon dioxide extraction of bioactive components from common carp (Cyprinus carpio L.) viscera. Sep. Pur. Technol. 138, 191-197. https://doi.org/10.1016/j.seppur.2014.10.020

Lu, HT, Jiang, Y, Chen, F. 2003. Preparative separation and puri­fication of squalene from the microalga Thraustochytrium ATCC 26185 by high-speed counter-current chromatogra­phy. J. Chromatogr. A 994, 37-43. https://doi.org/10.1016/S0021-9673(03)00454-0

Magnusson CD, Haraldsson GG. 2011. Ether lipids. Chem. Phys. Lipids 164, 315-340. https://doi.org/10.1016/j.chemphyslip.2011.04.010 PMid:21635876

Martinez-Correa HA, Gomes DCA, Kanehisa SL, Cabral FA. 2010. Measurements and thermodynamic model­ing of the solubility of squalene in supercritical carbon dioxide. J. Food Eng. 96, 43-50. https://doi.org/10.1016/j.jfoodeng.2009.06.041

Nemeth M, Millesi E, Wagner KH, Wallner B. 2014. Effects of Diets High in Unsaturated Fatty Acids on Socially Induced Stress Responses in Guinea Pigs. PLoS One 9, 36-40. https://doi.org/10.1371/journal.pone.0116292 PMid:25551380 PMCid:PMC4281161

O'Brien RD. 2004. Fats and oils: formulating and processing for applications. CRC Press: Boca Raton, 574 p.

Pacheco MTB, Barrera-Arellano D. 1994. Fraccionamento del aceite de hígado de tiburón azul (Prionace glauca) y su esta­bilización con antioxidantes. Grasas Aceites 45 (3), 155-160. https://doi.org/10.3989/gya.1994.v45.i3.987

Pietsch A, Jaeger P. 2007. Concentration of squalene from shark liver oil by short-path distillation. Eur. J. Lipid Sci. Technol. 109, 1077-1082. https://doi.org/10.1002/ejlt.200700039

Rubio-Rodríguez N, Diego SM, Beltrán S, Jaime I, Sanz MT, Rovira J. 2012. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extrac­tion methods. J. Food Eng. 109, 238-248. https://doi.org/10.1016/j.jfoodeng.2011.10.011

Sahena F, Zaidul ISM, Jinap S, Jahurul MHA, Khatib A, Norulaini NAN. 2010. Extraction of fish oil from the skin of Indian mackerel using supercritical fluids. J. Food Eng. 99, 63-69. https://doi.org/10.1016/j.jfoodeng.2010.01.038

Santos DN, Takahashi EH, Verde AB, Oliveira AL. 2016. Supercritical extraction of cobia (Rachycentron canadum) liver oil as a new source of squalene. Food and Public Health 6, 157-164. https://doi.org/10.5923/j.fph.20160606.02

Schaschke C, Fletcher I, Glen N. 2013. Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature. Processes 1, 30-48. https://doi.org/10.3390/pr1020030

Shapiro H. 2003. Could n-3 polyunsaturated fatty acids reduce pathological pain by direct actions on the nervous system? Prostag. Leukotr. Ess. 68, 219-224. https://doi.org/10.1016/S0952-3278(02)00273-9

Sunarya MH, Taylor KDA. 1996. Methods of extraction com­position and stability of vitamin A and other components in dogfish (Squalus acanthias) liver oil. Food Chem. 55, 215-220. https://doi.org/10.1016/0308-8146(95)00109-3

Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M, Tariq S. 2014. Supercritical carbon dioxide extraction of micro­algae lipid: Process optimization and laboratory scale-up. J. Supercrit. Fluids 86, 57-66. https://doi.org/10.1016/j.supflu.2013.11.020

Tavares R, Ortiz M, Rocha FA. 2012. Population structure, distribution and relative abundance of the blue shark (Prionace glauca) in the Caribbean Sea and adjacent waters of the North Atlantic. Fish Res. 129-130, 137-152. https://doi.org/10.1016/j.fishres.2012.06.018

Tenuta-Filho A, Macedo L. 2015. Removal of Mercury from Shark Using Sodium Borohydride and Product Characterization. Int. J. Food Processing Technol. 2, 34-41. https://doi.org/10.15379/2408-9826.2015.02.02.05

Turner C, King JW, Mathiasson L. 2001. Supercritical fluid extraction and chromatography for fat-soluble vitamin analysis. J. Chromatogr. A 936, 215-237. https://doi.org/10.1016/S0021-9673(01)01082-2

Vázquez JA, Blanco M, Fraguas J, Pastrana L, Pérez-Martín R. 2016. Optimisation of the extraction and purifica­tion of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chem. 198, 28-35. https://doi.org/10.1016/j.foodchem.2015.10.087 PMid:26769501

Vögler R, Beier E, Ortega-García S, Santana-Hernández H, Valdez-Flores JJ. 2012. Ecological patterns, distribution and population structure of Prionace glauca (Chondrichthyes: Carcharhinidae) in the tropical-subtropical transi­tion zone of the north-eastern Pacific. Mar. Environ. Res. 73, 37-52. https://doi.org/10.1016/j.marenvres.2011.10.009 PMid:22130519

Xu WL, Huang YB, Qian JH, Sha O, Wang YQ. 2005. Separation and purification of stigmasterol and β-sitosterol from phytosterol mixtures by solvent crystallization method. Sep. Pur. Technol. 41, 173-178. https://doi.org/10.1016/j.seppur.2004.02.005

Zenebon O, Pascuet NS, Tiglea P. coord. 2008 Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos. 4 ed, 1ed digital. São Paulo, 1020p.

Published

2020-06-30

How to Cite

1.
Santos DN, Silva FS, Verde AB, Bittencourt GM, de Oliveira AL. Determination of functional compounds in blue shark (Prionace glauca) liver oil obtained by green technology. Grasas aceites [Internet]. 2020Jun.30 [cited 2024Apr.24];71(2):e354. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1819

Issue

Section

Research