Grasas y Aceites, Vol 71, No 3 (2020)

Effect of soil temperature during seed filling period on oleic/linoleic ratio, tocopherols and sugar contents in peanut kernels


https://doi.org/10.3989/gya.0449191

R. J. Haro
Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Manfredi, Argentina
orcid https://orcid.org/0000-0001-9920-7762

J. L. Dardanelli
Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Manfredi, Argentina
orcid https://orcid.org/0000-0001-9696-8224

M. J. Martínez
Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Manfredi, Argentina
orcid https://orcid.org/0000-0002-0991-2378

Abstract


The relationship of chemical quality of peanut seed with the soil temperature (ST) has received little attention. The aim of this work was to determine the effects of ST in the seed growth environment, during the seed filling period, on the oleic/linoleic acid (O/L) ratio, alpha, beta, gamma, delta tocopherols and the sum of them (TT), fructose, glucose and sucrose and the sum of them (FGS), contents in peanut kernels. Field experiments included cultivars (Florman and ASEM), water regimes (irrigated and water stress), sowing dates and alteration of ST. The response of O/L ratio to ST fitted a linear model, where the O/L ratio increased while ST increased. Mean O/L ratios were 1.31 for ASEM and 1.20 for Florman. The TT mean concentration was similar for both genotypes (478 ppm). A positive association between α-tocopherol (the main source of vitamin E) and ST, and a negative association between δ and α tocopherols were detected. The responses of FGS and sucrose to ST fitted linear models, where increments in ST showed decreases in FGS and sucrose concentrations. However, the decrease rates of FGS and sucrose in ASEM were three times lower than in Florman. The results showed that ST affected the chemical composition of peanut kernels, which mainly determines the shelf life and flavor of both genotypes differentially.

Keywords


Oleic/linoleic acid ratio; Peanut seed; Soil temperature; Sugars; Tocopherols

Full Text:


HTML PDF XML

References


Ahmed EM, Young CY. 1982. Composition, nutrition and fla­vor of peanuts, in Pattee HE, Young CT (Eds.) Peanut Science and Technology. Amer. Peanut Res. Educ. Soc. Inc., Yoakum, TX, USA, pp. 655–688.

Andersen PC, Gorbet DW. 2002. Influence of year and planting date on fatty acid chemistry of high oleic acid and nor­mal peanut genotypes. J. Agric. Food Chem. 50, 1298–1305.

Andersen PC, Hill K, Gorbet DW, Brodbeck BV. 1998. Fatty acid and amino acid profiles of selected peanut cultivars and breeding lines. J. Food Compos. Anal. 11, 100–111.

AOCS. 1998. Official Methods and Recommended Practices of the American Oil Chemists, 5th ed.; American Oil Chemists Society: Champaign, IL.

Bascha SM. 1992. Soluble sugar composition of peanut seed. J. Agric. Food Chem. 40, 780–783.

Bett KL, Varcellotti JR, Lovergren NV, Sanders TN, Hinsch RT, Rasmussen GK. 1994. A comparison of the fla­vor and compositional quality of peanuts from several origins. Food Chem. 51, 21–27.

Boote KJ. 1982. Growth stages of peanut (Arachis hypogaea L.). Peanut Sci. 9, 35–39.

Braddock JC, Sims CA, O’Keefe SK. 1995. Flavor and oxida­tive stability of roasted high oleic acid peanuts. J. Food Sci. 60, 489–493.

Burke JJ, Chen J, Rowland DL, Sanders TH, Dean LL. 2009. Temperature effects on carbohydrates of hydroponically-grown peanuts. Peanut Sci. 36, 150–156.

Cámara Argentina del Maní. 2019. http://www.camaradelmani. org.ar/english/update-on-supply-and-demand-estimation-cam/ Last accesed 30/07/2019.

Carrera C, Martínez MJ, Dardanelli J, Balzarini M. 2011. Environmental variation and correlation of seed compo­nents in nontransgenic soybeans: protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Sci. 51, 1–10.

Casini C, Dardanelli JL, Martínez MJ, Balzarini M, Borgogno CS, Nassetta M. 2003. Oil quality and sugar content of peanuts (Arachis hypogaea L.) grown in Argentina: Their relationship with climatic variables and seed yield. J. Agric. Food Chem. 51, 6309–6313.

Casini C, Martinez MJ, Chulze S, Nassetta M, Ruiz S, Torres A, Gastaldi L, Avalis D, Silva C, Guzmán C, Lamarque A, Reartes N, Borgogno C, Balzarini M, Rolando R, Ferrayoli C. 2001. Variabilidad de la calidad del maní argentino, en: Actas XVI Jornada Nacional del Maní, Gral. Cabrera, Córdoba, Argentina, pp. 61–63.

Davis JP, Dean LL. 2016. Peanut Composition, Flavor and Nutrition, in: - Genetics, Processing, and Utilization. AOCS Press, Chapter 11, pp 289–345.

Dwivedi SL, Nigam SN, Nageswara Rao RC. 2000. Photoperiod effects on seed quality traits in peanut. Crop Sci. 40, 1223–1227.

Firestone D. 1999. Physical and chemical characteristics of oils, fats and waxes, 2nd ed., AOCS Press, Champaign, IL.

Fouconnier ML, Rojas Bletrán J, Delcarte J, Dejaeghere F, Marlier M, Du Jardin P. 2002. Lipoxigenase pathway and membrane permeability and composition during storage of potato tubers (Solanum tuberosum L. Cv. Bintje and Désirée) in different conditions. Plant Biol. 48, 750–756.

Frankel EN. 2005. Lipid Oxidation, second Ed., The Only Press, PJ Barnes & Associeates PO Bos 200, Bridgwater TA7 0YZ, England, pp. 1–450.

Gadgil JD, Mitra R. 1983. Chemical composition of seeds in induced groundnut mutants and their derivatives. Indian J. Agric. Sci. 53, 295–298.

Giambastiani C, Casanoves F. 2000. Composición lipídica de semillas de maní (Arachis hypogaea L.) obtenidas bajo diferentes condiciones de disponibilidad de agua. Grasas Aceites 51 (6), 412–416.

Golombek SD, Sridhar R, Singh U. 1995. Effect of soil tempera­ture on the seed composition of three spanish cultivars of groundnut (Arachis hypogaea L.). J. Agric. Food Chem. 43, 2067–2070.

Grimm DT, Sanders TH, Patte HE, Williams DE, Sanchez- Domínguez S. 1996. Chemical composition of Arachis hypogaea L. Subsp. hypogaea Var. hirsuta peanuts. Peanut Sci. 23, 111–116.

Haro RJ, Casini, C. 2008. Efecto de labranzas y cultivos antecesores sobre la producción y calidad del grano de maní. IDIA XXI-Cultivos Industriales. 10, 1015–110.

Haro RJ, Dardanelli JL, Collino DJ, Otegui ME. 2008. Seed yield determination of peanut crops under water defi­cit: soil strength effects on pod set, the source-sink ratio and radiation use efficiency. Field Crops Res. 109, 24–33.

Haro RJ, Otegui ME, Collino DJ, Dardanelli JL. 2007. Environmental effects on seed yield determination of irri­gated peanut crops: links with radiation use efficiency and crop growth rate. Field Crops Res. 103, 217–228.

Hashim IB, Koehler PE, Eitenmiller RR, Kvien CK. 1993a. Fatty acid composition and tocopherol content of drought stressed Florunner peanuts. Peanut Sci. 20, 21–24.

Hashim IB, Koehler PE, Eitenmiller RR. 1993b. Tocopherol in Runner and Virginia peanut cultivars at various matu­rity stages. J. Am. Oil Chem. Soc. 70, 633–635.

Higgs J. 2002. The beneficial role of peanuts in the diet-an update and rethink! Peanuts and their role in CHD, NUFS. 32, 214–218.

Holownia KI, Erickson MC, Chinnan MS, Eitenmiller RR. 2001. Tocopherol losses in peanuts oil during pressure frying of marinated chicken strip coated with edible films. Food Res. Int. 34, 77–80.

Hui Y. 1996. Edible Oil and Fat Products: Oils and Oilseeds, Bailey´s Industrial Oil and Fat Products, John Wiley and Sons Inc., Fifth ed., Volume 2, pp. 386.

Jonnala RS, Dunford NT, Dasshiell KE. 2006. Tocopherol, phytosterol and phospholipid compositions of new high oleic peanut cultivars. J. Food Compos. Anal. 19, 601–605.

Martinez MJ, Casini C, Silva MC, Aguilar R, Spahn JG, Ingá GM, Badini RG, Balzarini M. 2010. La Calidad del grano de maní producido en Córdoba destinado a la exportación, en: J.A. Mariotti (Ed.), Primera Edición, Ediciones INTA, Informe del Programa Nacional de Cultivos Industriales del INTA. Cultivos Industriales Avances 2006/2009, Buenos Aires, Argentina, pp. 28–32.

McMeans JL, Sanders TH, Wood BW, Blankenship PD. 1990. Soil temperature effects on free carbohydrate concentra­tions in Peanut (Arachis hypogaea L.) seed. Peanut Sci. 17, 31–35.

Messina M. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70, 439S-450S.

Ministerio de Agroindustria. 2019. https://www.magyp.gob. ar/sitio/areas/ss_mercados_agropecuarios/areas/region­ales/_archivos/000030_Informes/000050_Maní/000009_ Situación%20Mercado%20del%20Maní%20Junio%20 -%202017.pdf

Misra JB. 2004. A mathematical approach to comprehensive evaluation of quality in groundnut. J. Food Compos. Anal. 17, 69–79.

Nawar WW. 2000. Lípidos, en: O.R. Fenema (Ed.) Química de los alimentos, ACRIBIA, S.A. 2da Edición, Zaragoza, España, pp. 269–382.

Panigatti JL. 2010. Argentina 200 años, 200 suelos. Ed. INTA Buenos Aires. Ilustraciones y cuadros, pp 345.

Pattee HE, Isleib TG, Giesbrech FG, McFeeters RF. 2000. Investigations into genotypic variation of peanut carbohy­drates. J. Agric. Food Chem. 48, 750–756.

Sánchez R, Baldessari J, Royo O. 2010. Peanut Genetic Resources Catalogue, Primera Edición, Ediciones INTA. Buenos Aires, Argentina.

Sanders TH, Branch WD, Simpson CE, Coffelt TA. 1994. Effect of cultivar and production location on tocopherol concen­tration, O/L ratio, and oil stability of six peanut cultivars, Proceedings of American Peanut Research and Education Society 26, 46.

Sanders TH, Lansden JA, Greens RL, Drexler JS, Williams EJ. 1982. Oil characteristics of peanut fruit separated by non­destructive maturity classification method. Peanut Sci. 9, 20–23.

Sattler SE, Cahoom EB, Coughlan SJ, Delapenna D. 2003. Characterization of tocopherol cyclases from higher plants and cyanobacteria, Evolutionary implications for tocoph­erol synthesis and function. Plant Physiol. 132, 2184–2195.

Savage GP, Keenan JI. 1994. The composition and nutritive value of groundnut kernerls, in Smartt J. (Ed.) The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, London, UK, pp. 173–213.

Seguin P, Turcotte P, Tremblay G, Pageau D, Liu W. 2009. Tocopherols concentration and stability in early maturing soybean genotypes. Agron. J. 101, 1153–1159.

Shin EC, Huang YZ, Pegg RB, Phillips RD, Eitenmiller RR. 2009. Commercial runner peanut cultivars in the United States: Tocopherol composition. J. Agric. Food Chem. 57, 10289–10295.

Shintani DK, Cheng Z, Della Penna D. 2002. The role of 2-methyl-6-phytybebziquinone methyltrenferase in deter­mining tocopherol composition in Synechocystis sp., FEBS Lett. 511, 1–5.

Silva MP, Martinez MJ, Casini C, Grosso NR. 2010. Tocopherol content, peroxide value and sensory attributes in roasted peanuts during storage. Int. J. Food Sci. Technol. 45, 1499–1504.

Statistix V7. 2000. Analytical Software, Tallahassee, Florida.

Talcott ST, Passeretti S, Duncan CE, Gorbet DW. 2005. Polyphenolic content and sensory properties of normal and high oleic acid peanuts. Food Chem. 90, 379–388.

Tucker JM, Townsend DM. 2005. α-Tocopherol: roles in prevention and therapy of human disease. Biomed. Pharmacother. 59, 280–387.

Warner KJH, Dimick PS, Ziegler GR, Mumma RO, Hollender R. 1996. Flavor-fade and off-flavors in ground roasted pea­nuts as related to selected pyrazines and aldehydes. J. Food Sci. 61, 469–472.

Yol E, Uzun, B. 2018. Influences of genotypes and location interactions on oil, fatty acids and agronomical proper­ties of groundnuts. Grasas Aceites 69 (4) e276.




Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es