Fatty acid profile, mineral content and bioactive compounds of cocoa spreads supplemented with baru almonds (Dipteryx alata Vog.)





Bioactive compounds, Brazilian Cerrado, High-Performance Liquid Chromatography, New Products, Oilseeds


The present study aimed to perform a chromatographic and spectrophotometric characterization of the bioactive compounds, antioxidants, phenolics, profile of fatty acids and minerals in spreads supplemented with different contents of baru almonds. The addition of baru almonds (P1 treatment) enhanced the concentrations of vitamin C, antioxidants, gallic acid, calcium, magnesium, sulfur, manganese and oleic acid. In contrast, the absence of this oil in P3 treatment resulted in an increase in the concentrations of vanillin, p-coumaric acid, ferric acid, o-coumaric acid, linoleic acid and saturated and polyunsaturated fatty acids. When the tannin, beta-carotene/linoleic acid, trans-cinnamic acid, monounsaturated fatty acids, hypocholesterolemic and hypercholesterolemic fatty acid contents and atherogenic and thrombogenic indices were evaluated, no significant (p > 0.05) differences were detected between treatments.


Download data is not yet available.


AOAC. 1990. Official methods of analysis of AOAC international, 15th ed. Washington, DC, USA: Association of Official Analytical Chemists. p. 1990.

Campidelli MLL, Souza JDC, Sousa EC, Magalhães ML, Nunes EEC, Faria PB, Franco M, Vilas Boas EVB. 2020. Effects of the drying process on the fatty acids, phenolic profile, tocopherols and antioxidants activity of baru almonds (Dipteryx alata Vog.). Grasas Aceites 71 (1), e343.

Campidelli MLL, Carneiro JDS, Sousa EC, Magalhães ML, Konig IFM, Braga MA, Orlando TM, Simão SD, Lima LMZ, Vilas Boas EVB. 2019. Impact of the Drying Process on the Quality and Physicochemical and Mineral Composition of Baru Almonds (Dipteryx Alata Vog.) Impact of the Drying Process on Baru Almonds. J. Cul. Sci. Tech. 200, 1–13.

Chu X, Wang H, Jiang Y, Zhang Y, Bao Y, Zhang X. 2016. Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in vivo and in vitro. J. Pharmacol. Sci. 130, 15–23.

Dillinger TL, Barriga P, Escárcega S, Jimenez M, Lowe DS, Grivetti LE. 2000. Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J. Nutr. 130, 2057–2072.

Efraim P, Alves AB, Jardim DCP. 2011. Polifenóis em cacau e derivados: teores, fatores de variação e efeitos na saúde. Braz. J. Food Technol. 14, 181–201.

Folch J, Lees M, Stanley SA. 1957. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 479–503.

Giacometti J, Muhvic D, Pavletić A, Ðudarić L. 2016. Cocoa polyphenols exhibit antioxidant, anti-inflammatory, anticancerogenic, and anti-necrotic activity in carbon tetrachloride- intoxicated mice. J. Funct. Foods 23, 177–187. Hassimoto NM, Genovese IS, Lajolo FM. 2005. Antioxidant activity of dietary fruits, vegetables and commercial frozen fruit pulps. J. Agric. Food Chem. 53, 2928–2935.

Herbello-Hermelo P, Lamas JP, Lores M, Domínguez-González R, Bemejo-Barrera P, Moreda-Pinero A. 2018. Polyphenol bioavailability in nuts and seeds by an in vitro dialyzability approach. Food Chem. 254, 20–25.

Hernández-Hernández C, Viera-Alcaide I, Morales-Sillero AM, Fernández-Bolaños J, Rodríguez-Gutiérrez G. 2018. Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chem. 240, 831–839.

Holzhauser T, Stephan O, Vieths S. 2002. Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: a comparative study with DNA P CR - ELISA and protein Sandwich-Elisa. J. Agric. Food Chem. 50, 5808–5815.

Institute of Medicine. 2000. Food and Nutrition Board. Dietary Reference Intake for Vitamin C, Vitamin E, Selenium and Carotenoids. Washington, DC, USA: National Academy Press; 2000.

Kornsteiner M, Karl-Heinz W, Elmadfa I. 2006. Tocopherols and total phenolics in 10 different nut types. Food Chem. 98, 381–387. https://doi.org/10.1016/j.foodchem.2005.07.033

Lemos MRB, Zambiazi RC, de Almeida EM, de Alencar ER. 2016. Tocopherols and Fatty Acid Profile in Baru Nuts (Dipteryx Alata Vog.), Raw and Roasted: Important Sources in Nature that Can Prevent Diseases. Food Sci. Nutr. Technol. 1, 1–11.

Lottenberg AMP. 2009. Importance of the dietary fat on the prevention and control of metabolic disturbances and cardiovascular disease. Arq. Bras. Endocrinol. Metab. 53, 595– 607.

Milardovic S, Ivekovic D, Grabaric BS. 2006. A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68, 175–180.

Miller HE. 1971. A simplified method for the evaluation of antioxidant. J. Am. Oil Chem. Soc. 48, 91–97.

Naczk M, Shahidi F. 2004. Extraction and analysis of phenolics in food. J. Chromatogr. A 1054, 95–111.

Nunes CA, Freitas MP, Pinheiro ACM, Bastos SC. 2012. Chemoface: 137 a novel free user-friendly interface for chemometrics. J. Braz. Chem. Soc. 23, 2003–2010.

Palombini SV, Claus T, Maruyama SA, Carbonera F, Montanher PF, Visentainer JV, Matsushita M. 2016. Optimization of a New Methodology for Determination of Total Phenolic Content in Rice Employing Fast Blue BB and QUENCHER Procedure. J. Braz. Chem. Soc. 7, 1188–1194.

Pelvan E, Okten O, Karadag A, Alasalvar C. 2018. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem. 244, 102–108.

Pineli L de O, de Carvalho MV, de Aguiar LA, de Oliveira GT, Celestino SMC, Botelho RBA, Chiarello MD. (2015). Use of baru (Brazilian almond) waste from physical extraction of oil to produce flour and cookies. LWT 60, 50–55.

Roe JH, Kuether CA. 1943. The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dehydroascorbic acid. J. Biol. Chem. 147, 399–407.

Santos-Silva J, Bessa RJB, Santos-Silva F. 2002. Effects of genotype, feeding system and slaughter weigt on the quality of light lambs. Fatty acid composition of meat. Livest. Sci. 77, 187–194.

Sarruge JR, Haag HP, editors. 1974. Análises químicas em plantas. Piracicaba, Brasil: Esalq; 1974.

Souza RGM, Gomes AC, Castro IA, Mota JF. 2018. A baru almond–enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial. Nutr. 56, 154–160.

Traber MG, Stevens JF. 2011. Vitamins C and E: beneficial effects fromamechanistic perspective. Free Radic. Biol. Med. 51, 1000–1013.

Ulbricht TLV, Southgate DAT. 1991. Coronary Heart Disease: Seven Dietary Factors. Lancet 338, 985–992.

Żyżelewicz D, Budryn G, Oracz J, Antolak H, Kręgiel D, Kaczmarska M. 2018. The effect on bioactive components and characteristics of chocolate by functionalization with raw cocoa beans. Food Research International 113, 234–244.



How to Cite

Campidelli ML, Souza Carneiro JD, Souza EC, Magalhães ML, dos Reis GL, Vilas Boas EV. Fatty acid profile, mineral content and bioactive compounds of cocoa spreads supplemented with baru almonds (Dipteryx alata Vog.). grasasaceites [Internet]. 2020Dec.4 [cited 2021Jan.21];71(4):e382. Available from: http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1847




Most read articles by the same author(s)