Physicochemical characterization and oxidative stability of microencapsulated edible sacha inchi seed oil by spray drying

Authors

DOI:

https://doi.org/10.3989/gya.1028192

Keywords:

Microencapsulation, Oxidative Stability, Sacha inchi, Spray drying

Abstract


The aim of this work was to obtain sacha inchi oil (SIO) microcapsules from two different species, Plukenetia volubilis L. (SIVO) and Plukenetia huayllabambana L. (SIHO), using different biopolymers as wall materials and spray drying technology. The physicochemical characteristics such as encapsulation efficiency, particle size, morphology and oxidative stability were analyzed in order to select the best formulation that could potentially be used as an ingredient in the development of functional food. Bulk SIO and four formulations were tested for each oil ecotype, using different encapsulating agents: maltodextrin (MD), Arabic gum (AG), whey protein concentrate (WPC) and modified starch HI-CAP®-100 (H). Microcapsules made of H presented the highest oxidative stability and encapsulation efficiency compared to AG, AG:MD or AG:MD:WPC formulations.

Downloads

Download data is not yet available.

References

Aberkane L, Roudaut G, Saurel R. 2014. Encapsulation and Oxidative Stability of PUFA-Rich Oil Microencapsulated by Spray Drying Using Pea Protein and Pectin. Food Bioproc. Technol. 7, 1505. https://doi.org/10.1007/s11947-013-1202-9

AOCS Official Method Cd 8b-90.1996. Peroxide Value, Acetic Acid-Isooctane Method. In Official Methods and Recommended Practices of the American Oil Chemists' Society; AOCS Press: Champaign, IL.

Bae EK, Lee SJ. 2008. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J. Microencapsulation 25 (8), 549-560. https://doi.org/10.1080/02652040802075682 PMid:18465295

Barbosa MIMJ, Borsarelli CD, Mercadante AZ. 2005. Light stability of spray dried bixin encapsulated with different edible polysaccharide preparations. Food Res. Internat. 38 (8-9), 989-994. https://doi.org/10.1016/j.foodres.2005.02.018

Barceló-Coblijn G, Murphy EJ. 2009. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog. Lipid Res. 48 (6), 355-374. https://doi.org/10.1016/j.plipres.2009.07.002 PMid:19619583

Campos D, Chirinos R, Gálvez L, Pedreschi R. 2018. Bioactive potential of Andean fruits, seeds, and tubers. Adv. Food Nutrit. Res. 84, 287-343. https://doi.org/10.1016/bs.afnr.2017.12.005 PMid:29555072

Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD. 2013. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 115 (4), 443-451. https://doi.org/10.1016/j.jfoodeng.2012.03.033

Chasquibol NA, Del Aguila C, Yácono JC, Guinda Á, Moreda W, Gómez-Coca RB, Pérez-Camino MC. 2014. Characterization of glyceridic and unsaponifiable compounds of Sacha inchi (Plukenetia huayllabambana L.) oils. J. Agric. Food Chem. 62, 10162-10169. https://doi.org/10.1021/jf5028697 PMid:25228323

Cholewski M, Tomczkowa M, Tomczyk M. 2018. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 10 (11), 1662. https://doi.org/10.3390/nu10111662 PMid:30400360 PMCid:PMC6267444

Delgado-Lista J, Pérez-Martinez P, López-Miranda J, Pérez- Jiménez F. 2012. Long chain omega-3 fatty acids and cardiovascular disease: a systematic review. British J. Nutrit. 107 (Suppl 2), S201-13. https://doi.org/10.1017/S0007114512001596 PMid:22591894

Drusch S, Schwarz K. 2006. Microencapsulation properties of two different types of n-octenylsuccinate-derivatised starch. Eur. Food Res. Technol. 222 (1-2), 155-164. https://doi.org/10.1007/s00217-005-0020-3

Dryakova A, Pihlanto A, Marnila P, Curda L, Korhonen HJT. 2010. Antioxidant properties of whey protein hydrolysates as measured by three methods. Eur. Food Res. Technol. 230 (6), 865-874. https://doi.org/10.1007/s00217-010-1231-9

Gabas AL, Telis VRN, Sobral PJA, Telis-Romero J. 2007. Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. J. Food Eng. 82 (2), 246-252 https://doi.org/10.1016/j.jfoodeng.2007.02.029

Gad AS, Khadrawy YA, El-Nekeety AA, Mohamed SR, Hassan NS, Abdel-Wahhab MA. 2011. Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition 27 (5), 582-589. https://doi.org/10.1016/j.nut.2010.04.002 PMid:20708378

Gallardo G, Guida L, Martinez V, López MC, Bernhardt D, Blasco R, Hermida L. 2013. Microencapsulation of linseed oil by spray drying for functional food application. Food Research International 52, (473-482). https://doi.org/10.1016/j.foodres.2013.01.020

Gharsallaoui AR, Roudaut G, Chambin O, Voilley A, Saurel R. 2007. Applications of spray drying in microencapsulation of food ingredients: an overview. Food Res. Int. 40 (9), 1107-1121. https://doi.org/10.1016/j.foodres.2007.07.004

Goud KG, Park HJ. 2005. Recent Developments in Microencapsulation of Food Ingredients. Drying Technol. 23, 1361-1394. https://doi.org/10.1081/DRT-200063478

Frascareli EC, Silva VM, Tonon RV, Hubinger MD. 2012. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food Bioprod. Process. 90 (3), 413-424. https://doi.org/10.1016/j.fbp.2011.12.002

Hoseini A, Jafari SM, Mirzaei H, Akhavan S. 2015. Application of image processing to assess emulsion stability and emulsification properties of Arabic gum. Carbohydr. Polym. 126, 1-8. https://doi.org/10.1016/j.carbpol.2015.03.020 PMid:25933515

ISO. 662:2016. Animal and vegetable fats and oils - Determination of moisture and volatile matter content

Jafari SA, Assadpoor E, He Y, Bhandari B. 2008. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technol. 26 (7), 816-835. https://doi.org/10.1080/07373930802135972

Jin YL. 2018. Chapter 17 - Starch-Based Microencapsulation. Starch in Food (Second Edition), Pag. 661-690. https://doi.org/10.1016/B978-0-08-100868-3.00017-2

Klinkersorn U, Sophanodora P, Chinachoti P, McClements D, Decker EA. 2005. Stability of spray-dried tuna oil emulsion encapsulated with two-layered interfacial membranes. J. Agric. Food Chem. 53, 8365-8371. https://doi.org/10.1021/jf050761r PMid:16218689

Kolanowski W, Laufenberg G, Kunz B. 2004. Fish oil stabilization by microencapsulation with modified cellulose. Int. J. Food Sci. Nutrit. 55 (4), 333-343. https://doi.org/10.1080/09637480410001725157 PMid:15369987

NTP. Norma Tećnica Peruana 151.400, amendment to NTP 151.400, 2009. Requisitos Aceite Sacha Inchi, INDECOPI: Lima, Perú, 2014.

Partanen R, Raula J, Seppänen R, Buchert J, Kauppinen E, Forssell P. 2008. Effect of relative humidity on oxidation of flaxseed oil in spray dried whey protein emulsions. J. Agric. Food Chem. 56 (14), 5717-5722. https://doi.org/10.1021/jf8005849 PMid:18572915

Rodríguez A, Corazón GM, Cachique D, Mejía K, Del Castillo D, Renno J F, García-Dávila C. 2010. Diferenciación morfológica y por ISSR (lnter simple sequence repeats) de especies del género Plukenetia (Euphorbiaceae) de la Amazonia peruana: propuesta de una nueva especie. Revistas Peruana de biología v.17 n.3. Lima dic. 201 O. versión Online ISSN 1727-9933. https://doi.org/10.15381/rpb.v17i3.7

Salami M, Moosavi-Movahedi AA, Ehsani MR, Yousefi R, Haertlé T, Chober JM, Razavi SH, Henrich R, Balalaie S, Ebadi SA, Pourtakdoost S, Niasari-Naslaji A. 2010. Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. J. Agric. Food Chem. 58 (6), 3297-3302. https://doi.org/10.1021/jf9033283 PMid:20175528

Silva P, Stringheta P, Teófilo R, de Oliveira I. 2013. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering 117, 538-544. https://doi.org/10.1016/j.jfoodeng.2012.08.039

Tonon RB, Pedro RB, Grosso C, Hubinger MD. 2012. Microencapsulation of Flaxseed Oil by Spray Drying: Effect of Oil Load and Type of Wall Material. Drying Technol. Int. J. 30 (13), 1491-1501. https://doi.org/10.1080/07373937.2012.696227

Triana-Maldonado DM, Torijano-Gutiérrez SA, Giraldo- Estrada C. 2017. Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L.) from Antioquia, Colombia. Grasas Aceites 68 (1), e172. https://doi.org/10.3989/gya.0786161

Velasco J, Dobarganes MC, Márquez-Ruiz G. 2000. Application of the accelerated test Rancimat to evaluate oxidative stability of dried microencapsulated oils. Grasas Aceites 51 (4), 261-267. https://doi.org/10.3989/gya.2000.v51.i4.422

Villanueva E, Rodríguez G, Aguirre E, Castro V. 2017. Influence of antioxidants on oxidative stability of the oil Chia (Salvia hispanica L.) by rancimat. Scientia Agropecuaria 8 (1), 19-27 https://doi.org/10.17268/sci.agropecu.2017.01.02

Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J. 2006. n-3 fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary-and secondary-prevention studies: A systematic review. Am. J. Clin. Nutrit. 84 (1), 5-17. https://doi.org/10.1093/ajcn/84.1.5 PMid:16825676

Published

2020-12-04

How to Cite

1.
Landoni L, Alarcon R, Vilca L, Chasquibol N, Pérez-Camino MC, Gallardo G. Physicochemical characterization and oxidative stability of microencapsulated edible sacha inchi seed oil by spray drying. Grasas aceites [Internet]. 2020Dec.4 [cited 2024Mar.29];71(4):e387. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1854

Issue

Section

Research

Most read articles by the same author(s)