Quality attributes of roasted Arabica coffee oil extracted by pressing: composition, antioxidant activity, sun protection factor and other physical and chemical parameters





Coffee Arabica, Diterpenes, Tocopherols, Volatile compounds


This research reports a comprehensive characterization of the composition profile and physical and chemical characteristics of roasted Arabica coffee oil obtained by mechanical pressing. The oil presented a peroxide value of 3.21 meq·kg-1 and an acid value of 7.3 mg KOH·g-1. A higher proportion of unsaturated fatty acids (58%), predominantly linoleic (L) and palmitic (P) acids, was observed; PLL and PLP were estimated as the main triacylglycerols. The oil was characterized by high contents in diterpenes and tocopherols (3720 and 913 mg·100g-1, respectively), the presence of caffeine and chlorogenic acids, as well as a high sun protection factor (9.7) and ABTS free radical-scavenging capacity (12.5 mg Trolox·mL-1). Among the 35 volatile compounds studied, furfurythiol and pyrazines were the main components of the oil. These properties showed that roasted coffee oil has good potential for use in food and cosmetics.


Download data is not yet available.


Akiyama M, Murakami K, Ikeda M, Iwatsuki K, Wada A, Tokuno K, Onishi M, Iwabuchi H. 2007. Analysis of the headspace volatiles of freshly brewed arabica coffee using solidphase microextraction. J. Food Sci. 72, 388-396.

Amin MZ, Islam T, Mostofa F, Uddin MJ, Rahman MM, Satter MA. 2019. Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (Cucurbita maxima Linn.). Heliyon 5, 1-6.

Anvisa. 2005. Agência Nacional de Vigilância Sanitária (ANVISA). RDC nº 270, de 22 de setembro de 2005. Regulamento técnico para óleos vegetais, gorduras vegetais e creme vegetal. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, n. 184, Seção 1. p.372.

AOCS. 2014. Official methods and recommended practices of the American Oil Chemist's Society. Official Method CE 8-89. Champaign: AOCS Press. Vol 1 and 2.

Belitz HD, Grosch W, Schieberle P. 2009. Food Chemistry. 4th, Springer, Berlin.

Bitencourt RG, Ferreira NJ, Oliveira AL, Cabral FA, Meirelles AJA. 2018. High pressure phase equilibrium of the crude green coffee oil - CO2 - ethanol system and the oil bioactive compounds. J. Supercrit. Fluids 133, 49-57.

Bonnet JP, Devesvre L, Artaud J, Moulin P. 2011. Dynamic viscosity of olive oil as a function of composition and temperature: A first approach. Eur. J. Lipid Sci. Technol. 113, 1019-1025.

Budryn G, Nebesny E, Zyzelewicz D, Oracz J, Miśkiewicz K, Rosicka-Kaczmarek J. 2012. Influence of roasting conditions on fatty acids and oxidative changes of Robusta coffee oil. Eur. J. Lipid Sci. Technol. 114, 1052-1061.

Buffo RA, Cardelli-Freire C. 2004. Coffee flavour: An overview. Flavour Fragr. J. 19, 99-104.

Calligaris S, Munari M, Arrighetti G, Barba, L, 2009. Insights into the physicochemical properties of coffee oil. Eur. J. Lipid Sci. Technol. 111, 1270-1277.

Carvalho CRL, Mantovani DMB, Carvalho PRN, Moraes RMM. 1990. Análises químicas de alimentos. Manual Técnico. Campinas: ITAL, 121p.

Cornelio-Santiago HP, Gonçalves CB, Oliveira NA, Oliveira AL. 2017. Supercritical CO2 extraction of oil from green coffee beans: Solubility, triacylglycerol composition, thermophysical properties and thermodynamic modelling. J. Supercrit. Fluids 128, 386-394.

Corso MP, Vignoli JA, Benassi MT. 2016. Development of an instant coffee enriched with chlorogenic acids. J. Food Sci. Technol. 53, 1380-1388.

Czerny M, Grosch W. 2000. Potent odorants of raw Arabica coffee. Their changes during roasting. J. Agric. Food Chem. 48, 868-872.

Dangarembizi R, Chivandi E, Dawood S, Erlwanger KH, Gundidza M, Magwa ML, Muredzi P, Samie A. 2015. The fatty acid composition and physicochemical properties of theunderutilised Cassia abbreviata seed oil. Pak J. Pharm. Sci. 28, 1005-1008.

Dias RCE, Faria-Machado AF, Mercadante AZ, Bragagnolo N, Benassi MT. 2014. Roasting process affects the profile of diterpenes in coffee. Eur. Food Res. Technol. 239, 961-970.

Dulsat-Serra N, Quintanilla-Casas B, Vichi S. 2016. Volatile thiols in coffee: A review on their formation, degradation, assessment and influence on coffee sensory quality. Food Res. Int. 89, 982-988.

Getachew AT, Chun BS. 2016. Optimization of coffee oil flavor encapsulation using response surface methodology. LWT - Food Sci. Technol. 70, 126-134.

González AG, Pablos F, Martín MJ, León-Camacho M, Valdenebro MS. 2001. HPLC analysis of tocopherols and triglycerides in coffee and their use as authentication parameters. Food Chem. 73, 93-101.

Guercia E, Berti F, Navarini L, Demitri N, Forzato C. 2016. Isolation and characterization of major diterpenes from C. canephora roasted coffee oil. Tetrahedron: Asymmetry 27, 649-656.

Hurtado-Benavides A, Dorado DA, Sánchez- Camargo ADP. 2016. Study of the fatty acid profile and the aroma composition of oil obtained from roasted Colombian coffee beans by supercritical fluid extraction. J. Supercrit. Fluids 113, 44-52.

Ico. 2019. International Coffee Organization. Coffee Market Report - December 2019. Available in: <http://www.ico.org/documents/cy2019-20/cmr-1219-p.pdf> Access on 15 January 2020.

ISO. 1978. International Organization for Standardization. ISO 5509: Animal and Vegetable Fats and Oils: Preparation of Methyl Esters of Fatty Acids. London: International Organization for Standardization.

Kalschne DL, Viegas MC, Conti AJ, Corso MP, Benassi MT. 2018. Steam pressure treatment of defective Coffea canephora beans improves the volatile profile and sensory acceptance of roasted coffee blends. Food Res. Int. 105, 393-402.

Kaur CD, Saraf S. 2010. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Res. 2, 22-25.

Kim HG, Hwang YP, Jeong HG. 2009. Kahweol blocks STAT3 phosphorylation and induces apoptosis in human lung adenocarcinoma A549 cells. Toxicol. Lett. 187, 28-34.

López-Galilea I, Fournier N, Cid C, Guichard E. 2006. Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure. J. Agric. Food Chem. 54, 8560-8566.

Mori ALB, Kalschne DL, Ferrão MAG, Fonseca AFA, Ferrão RG, Benassi MT. 2016. Diterpenes in Coffea canephora. J. Food Compos. Anal. 52, 52-57.

Muriel P, Arauz J. 2010. Coffee and Liver Disease. Fitoterapia 81, 297-305.

Nascimento EA, Aquino FJT, Nascimento PM, Chang R, Morais SAL. 2007. Volatiles compounds and potent odorants of conilon coffee in different degrees of roasting. Rev. Ciência Eng. 16, 23-30.

PubChem. 2018. National Center for Biotechnology Information (NCBI). Available in: <https://pubchem.ncbi.nlm.nih.gov/> Access on 13 May. 2019.

Oliveira AL, Cruz PM, Eberlin MN, Cabral FA. 2005. Brazilian roasted coffee oil obtained by mechanical expelling: compositional analysis by GC-MS. Ciência e Tecnol. Aliment. 25, 677-682.

Oliveira PMA, Almeida RH, Oliveira NA, Bostyn S, Gonçalves CB, Oliveira AL. 2014. Enrichment of diterpenes in green coffee oil using supercritical fluid extraction - Characterization and comparison with green coffee oil from pressing. J. Supercrit. Fluids 95, 137-145.

Pacetti D, Lucci P, Frega NG. 2015. Unsaponifiable matter of coffee, in Preedy, VR, 1st Edition. Coffee in Health and Disease Prevention. London, England: Academic Press,119- 127.

Plataforma Lames. 2019. Available in: <http://projetos.extras.ufg.br/plames/>Access on 15 January. 2020.

Raba DN, Chambre DR, Copolovici DM, Moldovan C, Copolovici LO. 2018. The influence of high-temperature heating on composition and thermo-oxidative stability of the oil extracted from Arabica coffee beans. PLoS One 13, 1-13.

Ribeiro, JM. 2015. Estudo da composição química e das atividades antioxidante e antibacteriana dos óleos extraídos dos grãos de café (Coffea arabica) cru e torrado. Dissertação, 72f. Mestrado em Química Orgânica. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 2015. Available in: <http://acervo.ufvjm.edu.br/jspui/bitstream/1/817/1/juliana_martins_ribeiro.pdf> Access on 15 January 2020.

Rocha CC, Reis C, Chaves ARM. 2013. Caracterização qualitativa de ácidos graxos como componentes dos óleos de grão de café verde, café torrado e borra de café, in: VIII Simpósio de pesquisa dos cafés do Brasil. Salvador-BA, 1-5.

Sanches MZ. 2016. Avaliação das características físico-químicas e sensoriais de óleo de café torrado (Coffea arabica) durante armazenamento em diferentes temperaturas. Dissertação, 68 f. Mestrado em Tecnologia de Alimentos. Universidade Tecnológica Federal do Paraná, Londrina, 2016. Available in:<http://repositorio.utfpr.edu.br/jspui/bitstream/1/2236/1LD_PPGTAL_M_Sanches%2c%20Marcelo%20Zuchi_2016.pdf>Access on 15 January. 2020

Spector AA. 1999. Essentiality of fatty acids. Lipids 34, 1-3.

Speer K, Kölling-Speer I. 2006. The lipid fraction of the coffee bean. Brazilian J. Plant Physiol. 18, 201-216.

Stanciu I. 2019. A new mathematical model for the viscosity of vegetable oils based on freely sliding molecules. Grasas Aceites 70 (3), e318.

Toledo PRAB, Pezza L, Pezza HR, Toci AT. 2016. Relationship between the different aspects related to coffee quality and their volatile compounds. Compr. Rev. Food Sci. Food Saf. 15, 705-719.

Turatti JM. 2001. Extração e caracterização de óleo de café, in: II Simpósio de pesquisa dos cafés do Brasil. 1-15.

Wagemaker TAL, Carvalho CRL, Maia NB, Baggio SR, Guerreiro Filho O. 2011. Sun protection factor, content and composition of lipid fraction of green coffee beans. Ind. Crops Prod. 33, 469-473.

Watkins SM, German JB. 2008. Unsaturated fatty acids, in Akoh CC, Min DB (Ed.) Food Lipids - Chemistry, Nutrition, and Biotechnology. 3ed, CRC Press, Boca Raton, 514-530.



How to Cite

Böger B, Mori A, Viegas M, Benassi M. Quality attributes of roasted Arabica coffee oil extracted by pressing: composition, antioxidant activity, sun protection factor and other physical and chemical parameters. grasasaceites [Internet]. 2021Mar.3 [cited 2021Apr.20];72(1):e394. Available from: http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1868