New insights into the antifungal activity of lactic acid bacteria isolated from different food matrices

Authors

DOI:

https://doi.org/10.3989/gya.1262192

Keywords:

Antifungal activity, Aspergillus section Nidulantes, Lactic acid bacteria, Penicillium, Table olive fermentation

Abstract


The anti-mold activity of 397 strains of lactic acid bacteria was evaluated using both the spot method in Petri plates and coculture in liquid medium. The study led to the selection of 34 strains isolated from table olives or olive brines, 15 strains from dairy products, and 10 strains from sourdoughs, all able to inhibit a strain of Penicillium crustosum and/or a strain of Aspergillus section Nidulantes, prevailing in two Calabrian olive brines. Seven representative strains were identified as Lactobacillus pentosus (four strains) and Lactobacillus sanfranciscensis (three strains) and are currently under testing for their antifungal activity during table olive fermentation. This research constitutes an initial contribution to the control of fungal growth and mycotoxin accumulation during table olive fermentation. The selected strains could be used as adjunct cultures in table olive fermentation, allowing for the biological control of table olive safety.

Downloads

Download data is not yet available.

References

Abd-el-Malek Y, Gibson T. 1948. Studies in the bacteriology of milk: I. The streptococci of milk. J. Dairy Res. 15, 233−248.

Aquilanti L, Silvestri G, Zannini E, Osimani A, Santarelli S, Clementi F. 2007. Phenotypic, genotypic and technological characterization of predominant lactic acid bacteria in Pecorino cheese from central Italy. J. Appl. Microbiol. 103, 948−960.

Argyri AA, Panagou EZ, Nychas G-JE, Tassou CC. 2014. Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing. Biomed. Res. Int. ID 515623.

Arroyo-López FN, Medina E, Ruiz-Bellido MÁ, Romero-Gil V, Montes-Borrego M, Landa BB. 2016. Enhancement of the knowledge on fungal communities in directly brined Aloreña de Málaga green olive fermentations by metabarcoding analysis. PLoS One 11 (9), e0163135.

Bavaro SL, Susca A, Frisvad JC, Tufariello M, Chytiri A, Perrone G, Mita G, Logrieco AF, Bleve G. 2017. Isolation, characterization, and selection of molds associated to fermented black table olives. Front. Microbiol.

Bearth A, Cousin ME, Siegrist M. 2014. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Prefer. 38, 14−23.

Cabo ML, Braber AF, Koenraad PM. 2002. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium. J. Food Prot. 65, 1309−1316.

Campus M, Değirmencioğlu N, Comunian R. 2018. Technologies and trends to improve table olive quality and safety. Front. Microbiol.

Chen AJ, Frisvad JC, Sun BD, Varga J, Kocsubé S, Dijksterhuis J, Kim DH, Hong SB, Houbraken J, Samson RA. 2016. Aspergillus section Nidulantes (formerly Emericella): polyphasic taxonomy, chemistry and biology. Stud. Mycol. 84, 1−118.

Cheong EYL, Sandhu A, Jayabalan J, Le TTK, Nhiep NT, Ho HTM, Zwielehner J, Bansal N, Turner MS. 2014. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control 46, 91−97.

Cogan TM, Barbosa M, Beuvier E, Bianchi-Salvadori B, Cocconcelli PS, Fernandes I, Gomez J, Gomez R, Kalantzopoulos G, Ledda A, Medina M, Rea MC, Rodriguez E. 1997. Characterization of the lactic acid bacteria in artisanal products. J. Dairy Res. 64, 409−421.

Corsetti A, Gobbetti M, Rossi J, Damiani P. 1998. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol. 50, 253−256.

Değirmencioğlu N, Gürbüz O, Değirmencioğlu A, Yildiz S. 2014. Effect of pretreatments on microbial growth and sensory properties of dry-salted olives. J. Food Prot. 77, 1527−1537.

Delavenne E, Mounier J, Déniel F, Barbier G, Le Blay G. 2012. Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period. Int. J. Food Microbiol. 155, 185−190.

El Adlouni C, Tozlovanu M, Naman F, Faid M, Pfohl-Leszkowicz A. 2006. Preliminary data on the presence of mycotoxins (ochratoxin A, citrinin and aflatoxin B1) in black table olives “Greek style” of Moroccan origin. Mol. Nutr. Food Res. 50, 507−512.

Fernandez B, Vimont A, Desfossés-Foucault E, Daga M, Arora G, Fliss I. 2017. Antifungal activity of lactic and propionic acid bacteria and their potential as protective culture in cottage cheese. Food Control 78, 350−356.

Gerez CL, Torino MI, Rollán G, Font de Valdez G. 2009. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20, 144−148.

Ghitakou S, Koutras K, Kanellou E, Markaki P. 2006. Study of aflatoxin B1 and ochratoxin A production by natural microflora and Aspergillus parasiticus in black and green olives of Greek origin. Food Microbiol. 23, 612−621.

Heperkan D, Meric BE, Sismanoglu G, Dalkiliç G, Güler FK. 2006. Mycobiota, mycotoxigenic fungi, and citrinin production in black olives. Adv. Exp. Med. Biol. 571, 203−210.

Hondrodimou O, Kourkoutas Y, Panagou EZ. 2011. Efficacy of natamycin to control fungal growth in natural black olive fermentation. Food Microbiol. 28, 621−627.

Hurtado A, Ben Othman N, Hamdi M, Ferrer S, Reguant C, Bordons A, Rozès N. 2011. Characterization of Lactobacillus isolates from fermented olives and their bacteriocin gene profiles. Food Microbiol. 28, 1514−1518.

Kachouri F, Ksontini H, Hamdi M. 2014. Removal of aflatoxin B1 and inhibition of Aspergillus flavus growth by the use of Lactobacillus plantarum on olives. J. Food Prot. 77, 1760−1767.

Lind H, Jonsson H, Schnürer J. 2005. Antifungal effect of dairy propionibacteria - contribute on of organic acids. Int. J. Food Microbiol. 98, 157−165.

Magnusson J, Ström K, Roos S, Sjögren J, Schnürer J. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219, 129−135.

Ruiz-Barba JL, Caballero-Guerrero B, Maldonado-Barragán A, Jiménez-Díaz R. 2010. Coculture with specific bacteria enhances survival of Lactobacillus plantarum NC8, an autoinducer-regulated bacteriocins producer, in olive fermentations. Food Microbiol. 27, 413−417.

Rundberget T, Wilkins AL. 2002. Thomitrems A and E, two indole-alkaloid isoprenoids from Penicillium crustosum Thom. Phytochemistry 61, 979−985.

Schillinger U, Villarreal JV. 2010. Inhibition of Penicillium nordicum in MRS medium by lactic acid bacteria isolated from foods. Food Control 21, 107−111.

Schnürer J, Magnusson J. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16, 70−78.

Spelhaug SR, Harlander SK. 1989. Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. J. Food Prot. 52, 856−862.

Tokuşoğlu Ö, Alpas H, Bozoğlu F. 2010. High hydrostatic pressure effects on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolics and antioxidant activity of black table olives. Innov. Food Sci. Emerg. Technol. 11, 250−258.

Torriani S, Felis GE, Dellaglio F. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67, 3450−3454.

Turantaş F, Göksungur Y, Dinçer AH, Ünlütürk A, Güvenç U, Zorlu N. 1999. Effect of potassium sorbate and sodium benzoate on microbial population and fermentation of black olives. J. Sci. Food Agric. 79, 1197−1202.

Valerio F, Lavermicocca P, Pascale M, Visconti A. 2004. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 233, 289−295.

Visagie CM, Houbraken J, Frisvad JC, Hong S-B, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA. 2014. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 78, 343−371.

Young JPW, Downer HL, Eardly BD. 1991. Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173, 2271−2277.

Published

2021-03-03

How to Cite

1.
Panebianco F, Caridi A. New insights into the antifungal activity of lactic acid bacteria isolated from different food matrices. grasasaceites [Internet]. 2021Mar.3 [cited 2021Apr.20];72(1):e400. Available from: http://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1871

Issue

Section

Research

Funding data

Regione Calabria
Grant numbers PON 03 PE_00090_2

Regione Calabria
Grant numbers POR Calabria FESR 2007/2013 - 1.1.1.2