Grasas y Aceites, Vol 58, No 4 (2007)

Influence of desalinator wastewater for the cultivation of Arthrospira platensis. Fatty acids profile

Harriet Volkmann
Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Brazil

Ulisses Imianovsky
Post-graduating students of Food Science Program – Federal University of Santa Catarina, Brazil

Eliana Badiale Furlong
Chemistry Department – Federal University of Rio Grande Foundation, Brazil

Jorge Luiz Barcelos Oliveira
Department of Rural Engineering, Brazil

Ernani Sebastião Sant’Anna
Food Science Department of Federal University of Santa Catarina, Brazil


The need for a desalination processes in northeastern Brazil is due to the salinity of its water sources. However, these processes produce residues with high saline concentrations and a significant environmental impact. These wastewaters can be used for Arthrospira platensis cultivation. This work aimed to cultivate Arthrospira platensis in three different media: Paoletti Synthetic Medium (PSM), Salinated Water Medium (SWM) and Desalinator Wastewater Médium (DWWM). Microalgae were cultivated under controlled conditions, in 4 L photobioreactors, 30±1°C, 12 hours of light/dark photoperiod provided by fluorescent lamps at a light intensity of 140 μmol• m–2•s–1 and constant bubbling of air (0.5 L•L–1 •min–1). The effect of different media on cell concentration, productivity, total content of lipids and fatty acids profile was verified. Higher cell concentration, as well as higher productivity was observed in DWWM: 4.954 (±0.554) g•L–1 and 0.225 (±0.042) g•L–1 •day–1, respectively. Concerning total lipids, the contents of 4.54% and 4.69% were observed in DWWM and SWM, respectively. High levels of saturated fatty acids were observed in both treatments. Concerning γ-linolenic acid, the contents of 13.09% (DWWM) and 11.95% (SWM) were found.


Arthrospira platensis; Desalinator wastewater; Fatty acids

Full Text:



Babadzhanov AS, Abdusamatova N, Yusupova FM, Faizullaeva N, Mezhlumyan LG, Malikova MK. 2004. Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chemistry of Natural Compounds 40, (3) 276–279. doi:10.1023/B:CONC.0000039141.98247.e8

Deshnium P, Paithoonrangsarid K, Suphatrakul A, Meesapyodsuk D, Tanticharoen M, Cheevadhanarak S. 2000. Temperature-independent and –dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS Microbiology Letters 184, 207–213. doi:10.1111/j.1574-6968.2000.tb09015.x

Duarte Filho P, Silva P, Costa JAV. 2002. Estudo do crescimento de duas cepas de Spirulina platensis em diferentes meios de cultura e níveis de agitação. XVIII Congresso Brasileiro de Ciência e Tecnologia de Alimentos, Porto Alegre.

Estrada JEP, Bescós PB, Fresno AMV. 2001. Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco 56, 497–500. doi:10.1016/S0014-827X(01)01084-9

Ferraz CAM, Aquarone E, Krauter M. 1985. Efeito da luz e do pH no crescimento de Spirulina maxima. Revista de Microbiologia 16 (2), 132–137.

Folch J, Less M, Sloane SGH. 1957. A simple method for isolation and purification of lipids from animal tissues. Journal of Biological Chemistry 226, 497–509.

Hongsthong A, Deshnium P, Paithoonrangsarid K, Cheevadhanarak S, Tanticharoen M. 2003. Differential responses of three acyl-lipid desaturases to immediate temperature reduction occurring in two lipid membranes of Spirulina platensis strain C1. Journal Bioscience and Bioengineering 96 (6), 519–524. doi:10.1016/S1389-1723(04)70143-7

Jiménez C, Cossío B, Labella D, Niell FX. 2003. The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217, 179–190. doi:10.1016/S0044-8486(02)00118-7

Kroes R, Schaefer EJ, Squire RA, Williams GM. 2003. A review of the safety of DHA45-oil. Food and Chemical Toxicology 41, 1433–1446. doi:10.1016/S0278-6915(03)00163-7

Langdon C, Önal E. 1999. Replacement of living microalgae with spray-dried diets for the marine mussel Mytilus galloprovincialis. Aquaculture 180, 283–294. doi:10.1016/S0044-8486(99)00197-0

Medina AR, Grima EM, Gimenez AG, González MJI. 1998. Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances 16, 517–580. doi:10.1016/S0734-9750(97)00083-9

Metcalfe LD, Schimitz A, Pelke JR. 1966. Rapid preparation of fatty acid esters from lipids for gas liquid cromatography. Analytical Chemistry 38, 514–515. doi:10.1021/ac60235a044

Mühling M, Belay A, Whitton BA. 2005. Variation in fatty acid composition of Arthrospira (Spirulina) strains. Journal of Applied Phycology 17, 137–146. doi:10.1007/s10811-005-7213-9

Oliveira MACL, Monteiro MPC, Robbs PG, Leite SGF. 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International 7, 261–275. doi:10.1023/A:1009233230706

Pelizer LH, Danesi EDGA Rangel COA, Sassano CEN, Carvalho JCM, Sato S, Moraes IO. 2003. Influence of inoculum age and concentration in Spirulina platensis cultivation. Journal of Food Engineering 56, 371–375. doi:10.1016/S0260-8774(02)00209-1

Quoc KP, Dubacq JP. 1997. Effect of growth temperature on the biosynthesis of eukaryotic lipid molecular species by the cyanobacterium Spirulina platensis. Biochimica et Biophysica Acta 1346, 237–246.

Rafíqul IM, Jalal KCA, Alam MZ. 2005. Environmental factors for optimisation of Spirulina biomass in laboratory culture. Biotechnology 4 (1), 19–22.

Renaud SM, Thinh LV, Lambrinidis G, Parry DL. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211, 195–214. doi:10.1016/S0044-8486(01)00875-4

Richmond A. 1990. Handbook of microalgal mass culture, CRCPress, Boston.

Tadesse, Z, Boberg, M, Sonesten, L, Ahlgren, G. 2003. Effects of algal diets and temperature on the growth and fatty acid content of the cichlid fish Oreochromis niloticus L. – A laboratory study. Aquatic Ecology 37, 169–182. doi:10.1023/A:1023942711822

Tokus, oglu Ö, Ünal MK. 2003. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science 68 (4), 1144–1148.

Travieso L, Hall DO, Rao KK, Benítez F, Sánchez E, Borja R. 2001. A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. International Biodeterioration & Biodegradation 47, 151–155. doi:10.1016/S0964-8305(01)00043-9

Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219–240. doi:10.1016/0022-0981(89)90029-4

Walsh K, Jones GJ, Dunstan RH. 1997. Effect of irradiance on fatty acid, carotenoid, total protein composition and growth of Microcystis aeruginosa. Phytochemistry 44 (5), 817–824. doi:10.1016/S0031-9422(96)00573-0

Wen ZY,Chen, F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances 21, 273–294. doi:10.1016/S0734-9750(03)00051-X

Xue C, Hu Y, Saito H, Zhang Z, Li Z, Cai Y, Ou C, Lin H, Imbs AB. 2002. Molecular species composition of glycolipids from Sprirulina platensis. Food Chemistry 77, 9–13 doi:10.1016/S0308-8146(01)00315-6

Zittelli GC, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR. 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. Journal of Biotechnology 70, 299–312. doi:10.1016/S0168-1656(99)00082-6

Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support