Grasas y Aceites, Vol 57, No 3 (2006)

Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater


https://doi.org/10.3989/gya.2006.v57.i3.48

Fabiano Cleber Bertoldi
Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Catarina, Brazil

Ernani Sant’Anna
Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Catarina, Brazil

Maurício Villela da Costa Braga
Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Catarina, Brazil

Jorge Luiz Barcelos Oliveira
Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Catarina, Brazil

Abstract


Alternative culture media have been evaluated for the cultivation of microalgae, among them are, industrial and agriculture wastewaters, that make residue recycling possible by bioconverting it into a rich, nourishing biomass that can be used as a feeding complement in aquaculture and in diverse areas. The objective of this research is to determine the lipid, fatty acid profile and carotenoid produced by the microalgae Chlorella vulgaris cultivated in a hydroponic wastewater, with different dilutions. The results showed that lipid contents did not present significant differences. Fatty acids were predominantly 16:0, 18:0, 18:1 and 18:3n-6. For total carotenoids, the dilution of hydroponic wastewater did not stimulate the production of these pigments. From this study, it was determined that, the use of hydroponic wastewater as an alternative culture medium for  the cultivation of Chlorella vulgaris generates good perspectives for lipid, fatty acid and carotenoid production.


Keywords


Carotenoid;Chlorella vulgaris;Fatty acid;Hydroponic;Lipid;Microalgae

Full Text:


PDF

References


Belarbi, E.H, Molina, E., Chisti, Y. 2000. A process for high yeld and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish. Process Biochem. 35, 951-969. doi:10.1016/S0032-9592(00)00126-6

Beneman, J.R. 1990. Microalgae products and production: an overview. Dev. Ind. Microbiol. 31 (5), 247-256.

Bligh, A., Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917.

Borowitzka, I.J. 1990. Status of the Australian algal biotechnology industry in 1990. Australian J. Biotechnol. 4 (4), 239-240.

Borowitzka, M.A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313–321. doi:10.1016/S0168-1656(99)00083-8

Del Campo, J.A., Moreno, J., Rodríguez, H., Vargas, M.A, Rivas, J., Guerrero, M.G. 2000. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 76, 51-59. doi:10.1016/S0168-1656(99)00178-9

Dunstan, G.A., Volkman, J.K., Barret, S.M., Garland, C.D. 1993. Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. Appl. Phycol. 5, 71-83. doi:10.1007/BF02182424

Fernández-Reiriz, M.J., Perez-Camacho, A., Ferreiro, M.J., Blanco, J., Planas, M., Campos, M.J., Labarta, U. 1989. Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83, 17-37. doi:10.1016/0044-8486(89)90057-4

Hartman, L., Lago, R.C.A. 1973. Rapid preparation of fatty methyl esters from lipids. Lab. Pract. 22, 475-476.

Jones Jr., J.B., 1982. Hydroponics: its history and use in plant nutrition studies. J. Plant Nutrition. 5, 1003-1030.

Jussiak, M.P., Duszota, K., Mycielski, R. 1984. Intensive culture of Chlorella vulgaris as the second stage on biological purification of nitrogen industry wastewater. Water Res. 18, 1-7. doi:10.1016/0043-1354(84)90040-X

Mandalam, R.K., Palsson, B. 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris culture. Biotechnol. Bioeng. 59, 605-611. doi:10.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-8

Piorreck, M., Baasch, K., Pohl, P. 1984. Biomasa production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23, 207- 216.

doi:10.1016/S0031-9422(00)80304-0

Pipes, W.O., Gotaas, H.B. 1960. Utilization of organic matter by Chlorella grown in seawage. Appl. Microbiol. 8,163-169.

Rigano, V.D.M., Vona, V., Esporito, S., Carillo, P., Carfagna, S., Rigano, C. 1998. The physiologican significance of light and dark NH4 + metabolism in Chlorella sorokiniana. Phytochemistry 47, 177-181. doi:10.1016/S0031-9422(97)00569-4

Rioboo, C., González, O., Herrero, C., Cid, A. 2002. Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquat. Toxicol. 59, 225-235. doi:10.1016/S0166-445X(01)00255-7

Rodulfo, B.R., Marmol, N.H.R., Emralino, G.A. 1980. Production of Chlorella in clarified effluent from hog manure biogas digester. Phillipp J. Sci. 109, 51-58.

Sánchez, S., Martinez, M.E., Espejo, M.T., Pacheco, R. 2001. Mixotrophic culture of Chlorella pyrenoidosa with olive-mill wastewater as the nutrient medium. J. Appl. Phycol. 13, 443-449. doi:10.1023/A:1011929723586

Santos, G, M., Macedo, R. V. T., Alegre, R. M. 2003. Influência do teor de nitrogênio no cultivo de Spirulina maxima em duas temperaturas - Parte I: Alteração da composição da biomassa. Ciênc. Tecnol. Aliment., 23, 17-21.

Skjak-Braek, G. 1992. Alginates – biossynthesis and some structure function relationships relevant to biomedical and biotechnological applications. Biochem. Soc. Trans. 20, 27-33.

Strickland, J. D. H., Parsons, T. R. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Can., 2nd Ed., 167.

Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., Garland, C.D. 1989. Fatty acid and lipids composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219-240. doi:10.1016/0022-0981(89)90029-4

Wong, M.H., Lay, C.C. 1980. The comparison of soybean wastes using tea leaves and seawage sludge for growing Chlorella pyrenoidosa. Environ. Pollut. 23, 247-259. doi:10.1016/0143-1471(80)90067-7




Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es