Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater

Authors

  • Fabiano Cleber Bertoldi Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Catarina
  • Ernani Sant’Anna Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Catarina
  • Maurício Villela da Costa Braga Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Catarina
  • Jorge Luiz Barcelos Oliveira Laboratório de Biotecnologia Alimentar, Departamento de Ciência e Tecnologia de Alimentos. Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.3989/gya.2006.v57.i3.48

Keywords:

Carotenoid, Chlorella vulgaris, Fatty acid, Hydroponic, Lipid, Microalgae

Abstract


Alternative culture media have been evaluated for the cultivation of microalgae, among them are, industrial and agriculture wastewaters, that make residue recycling possible by bioconverting it into a rich, nourishing biomass that can be used as a feeding complement in aquaculture and in diverse areas. The objective of this research is to determine the lipid, fatty acid profile and carotenoid produced by the microalgae Chlorella vulgaris cultivated in a hydroponic wastewater, with different dilutions. The results showed that lipid contents did not present significant differences. Fatty acids were predominantly 16:0, 18:0, 18:1 and 18:3n-6. For total carotenoids, the dilution of hydroponic wastewater did not stimulate the production of these pigments. From this study, it was determined that, the use of hydroponic wastewater as an alternative culture medium for  the cultivation of Chlorella vulgaris generates good perspectives for lipid, fatty acid and carotenoid production.

Downloads

Download data is not yet available.

References

Belarbi, E.H, Molina, E., Chisti, Y. 2000. A process for high yeld and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish. Process Biochem. 35, 951-969. doi:10.1016/S0032-9592(00)00126-6

Beneman, J.R. 1990. Microalgae products and production: an overview. Dev. Ind. Microbiol. 31 (5), 247-256.

Bligh, A., Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917.

Borowitzka, I.J. 1990. Status of the Australian algal biotechnology industry in 1990. Australian J. Biotechnol. 4 (4), 239-240.

Borowitzka, M.A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70, 313–321. doi:10.1016/S0168-1656(99)00083-8

Del Campo, J.A., Moreno, J., Rodríguez, H., Vargas, M.A, Rivas, J., Guerrero, M.G. 2000. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 76, 51-59. doi:10.1016/S0168-1656(99)00178-9

Dunstan, G.A., Volkman, J.K., Barret, S.M., Garland, C.D. 1993. Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. Appl. Phycol. 5, 71-83. doi:10.1007/BF02182424

Fernández-Reiriz, M.J., Perez-Camacho, A., Ferreiro, M.J., Blanco, J., Planas, M., Campos, M.J., Labarta, U. 1989. Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83, 17-37. doi:10.1016/0044-8486(89)90057-4

Hartman, L., Lago, R.C.A. 1973. Rapid preparation of fatty methyl esters from lipids. Lab. Pract. 22, 475-476.

Jones Jr., J.B., 1982. Hydroponics: its history and use in plant nutrition studies. J. Plant Nutrition. 5, 1003-1030.

Jussiak, M.P., Duszota, K., Mycielski, R. 1984. Intensive culture of Chlorella vulgaris as the second stage on biological purification of nitrogen industry wastewater. Water Res. 18, 1-7. doi:10.1016/0043-1354(84)90040-X

Mandalam, R.K., Palsson, B. 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris culture. Biotechnol. Bioeng. 59, 605-611. doi:10.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-8

Piorreck, M., Baasch, K., Pohl, P. 1984. Biomasa production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23, 207- 216.

doi:10.1016/S0031-9422(00)80304-0

Pipes, W.O., Gotaas, H.B. 1960. Utilization of organic matter by Chlorella grown in seawage. Appl. Microbiol. 8,163-169.

Rigano, V.D.M., Vona, V., Esporito, S., Carillo, P., Carfagna, S., Rigano, C. 1998. The physiologican significance of light and dark NH4 + metabolism in Chlorella sorokiniana. Phytochemistry 47, 177-181. doi:10.1016/S0031-9422(97)00569-4

Rioboo, C., González, O., Herrero, C., Cid, A. 2002. Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides. Aquat. Toxicol. 59, 225-235. doi:10.1016/S0166-445X(01)00255-7

Rodulfo, B.R., Marmol, N.H.R., Emralino, G.A. 1980. Production of Chlorella in clarified effluent from hog manure biogas digester. Phillipp J. Sci. 109, 51-58.

Sánchez, S., Martinez, M.E., Espejo, M.T., Pacheco, R. 2001. Mixotrophic culture of Chlorella pyrenoidosa with olive-mill wastewater as the nutrient medium. J. Appl. Phycol. 13, 443-449. doi:10.1023/A:1011929723586

Santos, G, M., Macedo, R. V. T., Alegre, R. M. 2003. Influência do teor de nitrogênio no cultivo de Spirulina maxima em duas temperaturas - Parte I: Alteração da composição da biomassa. Ciênc. Tecnol. Aliment., 23, 17-21.

Skjak-Braek, G. 1992. Alginates – biossynthesis and some structure function relationships relevant to biomedical and biotechnological applications. Biochem. Soc. Trans. 20, 27-33.

Strickland, J. D. H., Parsons, T. R. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd. Can., 2nd Ed., 167.

Volkman, J.K., Jeffrey, S.W., Nichols, P.D., Rogers, G.I., Garland, C.D. 1989. Fatty acid and lipids composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219-240. doi:10.1016/0022-0981(89)90029-4

Wong, M.H., Lay, C.C. 1980. The comparison of soybean wastes using tea leaves and seawage sludge for growing Chlorella pyrenoidosa. Environ. Pollut. 23, 247-259. doi:10.1016/0143-1471(80)90067-7

Downloads

Published

2006-09-30

How to Cite

1.
Cleber Bertoldi F, Sant’Anna E, Villela da Costa Braga M, Barcelos Oliveira JL. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasas aceites [Internet]. 2006Sep.30 [cited 2024Apr.18];57(3):270-4. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/48

Issue

Section

Research

Most read articles by the same author(s)