Grasas y Aceites, Vol 59, No 4 (2008)

Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1

Hugo S. Garcia
Department of Chemical and Biological Engineering, University of Wisconsin-Madison. Madison, United States

In-Hwan Kim
Department of Food and Nutrition, College of Health Sciences, Korea University, Seoul, Korea, Republic of

Arnoldo López-Hernández
Department of Chemical and Biological Engineering, University of Wisconsin-Madison. Madison, United States

Charles G. Hill, Jr
Department of Chemical and Biological Engineering, University of Wisconsin-Madison. Madison, United States


A commercial phospholipase A1 (Lecitase® Ultra) was immobilized by physical adsorption on Duolite® and then used to mediate the incorporation of omega-3 fatty acids into lecithin. Adsorption isotherms showed that 12 h of contact were sufficient to deposit most of the enzyme onto the carrier. A pH of 7 and 50°C were the best conditions for adsorption. Reaction mixtures consisting of lecithin and a saponified fish oil concentrate (78.4 mol % EPA+DPA+DHA) were prepared at molar ratios ranging from 1:2 to 1:10. Typically 2 g of total substrates and 200 mg of enzyme preparation were employed in batch reactor trials. The fastest reaction rates were observed when a substrate mole ratio of 1:8 (lecithin:total fatty acids) was employed. Use of the enzyme preparation dried at pH 8 and reaction temperatures of 50 and 60°C produced the greatest extent of incorporation of the indicated n-3 fatty acids into the phospholipid after 24h of reaction.


Fish oil - Interesterification; Omega-3; Phospholipids

Full Text:



Adlercreutz D, Budde, H, Wehtje E. 2002. Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction. Biotechnol. Bioeng. 78, 403-411. doi:10.1002/bit.10225

Bradford M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72, 248-254. doi:10.1016/0003-2697(76)90527-3

D’Arrigo P, Servi S. 1997. Using phospholipases for phospholipid modification. TIBTECH 15, 90-96. doi:10.1016/S0167-7799(97)01012-3

De Maria L, Vind J, Oxenbøl KM, Svendsen A, Patkar S. 2007. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 74, 290-300. doi:10.1007/s00253-006-0775-x

Dittrich N, Ulbrich-Hofman R. 2001.Transphosphatidylation by immobilized phospholipase D in aqueous media. Biotechnol. Appl. Biochem. 34, 189-194. doi:10.1042/BA20010032

Egger D, Wehtje E, Adlercreutz P. 1997. Characterization and optimization of phospholipase A2 catalyzed synthesis of phosphatidylcholine. Biochim. Biophys. Acta 1343, 76-84.

Guo Z, Vikbjerg AF, Xu X. 2005. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol. Adv. 23, 203-259. doi:10.1016/j.biotechadv.2005.02.001

Hara F, Nakashima T. 1996. Transesterification of phospholipids by acetone-dried cells of Rhizopus species immobilized on biomass support particles. J. Am. Oil Chem. Soc. 73, 657-659. doi:10.1007/BF02518123

Haraldsson GG, Thorarensen A. 1999. Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. J. Am. Oil Chem. Soc. 76, 1143- 1149. doi:10.1007/s11746-999-0087-2

Hosokawa M, Ito M, Takahashi K. 1998. Preparation of highly unsaturated fatty acid-containing phosphatidylcholine by transesterification with phospholipase A2. Biotechnol. Tech. 12, 585-586.

Hossen M, Hernandez E. 2005. Enzyme catalyzed synthesis of structured phospholipids with conjugated linoleic acid. Eur. J. Lipid Sci. Technol. 107, 730-736. doi:10.1002/ejlt.200501190

Joshi A, Paratkar SG, Thorat BN. 2006. Modification of lecithin by physical, chemical and enzymatic methods. Eur. J. Lipid Sci. Technol. 108, 363-373. doi:10.1002/ejlt.200600016

Kim IH, Garcia HS, Hill Jr. CG. 2007. Phospholipase A1- catalyzed synthesis of phospholipids enriched in n-3 polyunsaturated fatty acid residues. Enz. Microb. Technol. 40, 1130-1135. doi:10.1016/j.enzmictec.2006.08.018

Kim J, Lee CS, Oh J, Kim BG. 2001. Production of egg yolk lysolecithin with immobilized phospholipase A2. Enz. Microb. Technol. 29, 587-592. doi:10.1016/S0141-0229(01)00447-1

Lilja-Hallberg M, Härröd M. 1995. Enzymatic and nonenzymatic esterification of long polyunsaturated fatty acids and lysophosphatidylcholine in isooctane. Biocatal. Biotransfor. 12, 55-66. doi:10.3109/10242429508998151

Madoery R, Gattone CG, Fidelio G. 1995. Bioconversion of phospholipids by immobilized phospholipase A2. J. Biotechnol. 40, 145-153. doi:10.1016/0168-1656(95)00040-W

Mustranta A, Forssell P, Poutanen K. 1995. Comparison of lipases and phospholipases in the hydrolysis of phospholipids. Proc. Biochem. 30, 393-401. doi:10.1016/0032-9592(94)00030-L

Mutua LN, Akoh CC. 1993. Lipase-catalyzed modification of phospholipids: incorporation of n-3 fatty acids into biosurfactants. J. Am. Oil Chem. Soc. 70, 125-128. doi:10.1007/BF02542613

Peng L, Xu X, Mu H, Høy CE, Adler-Nissen J. 2002. Production of phospholipids by lipase-catalyzed acidolysis: optimization using response surface methodology. Enz. Microb. Technol. 31, 523-532. doi:10.1016/S0141-0229(02)00147-3

Reddy JRC, Vijeeta T, Karuna MSL, Rao BVSK, Prasad RBN. 2005. Lipase-catalyzed preparation of palmitic and stearic acid-rich phosphatidylcholine. J. Am. Oil Chem. Soc. 82, 727-730. doi:10.1007/s11746-005-1134-x

Servi S. 1999. Phospholipases as synthetic catalysts. In: WD Fessner (Ed.) Biocatalysis - From Discovery to Application (Topics in Current Chemistry). pp 127- 158. Springer Verlag, Berlin. doi:10.1007/3-540-68116-7_5

Totani Y, Hara S. 1991. Preparation of polyunsaturated phospholipids by lipase-catalyzed transesterification. J. Am. Oil Chem. Soc. 68, 848-851. doi:10.1007/BF02660600

Van Nieuwenhuyzen W. 1981. The industrial uses of special lecithins: a review. J. Am. Oil Chem. Soc. 58, 886-888. doi:10.1007/BF02659651

Vijeeta T, Reddy JRC, Rao BVSK, Karuna MSL, Prasad RBN. 2004. Phospholipase-mediated preparation of 1-ricinoleoyl-2-acyl-sn-glycero-3-phosphocholine from soya and egg phosphatidylcholine. Biotechnol. Lett. 26, 1077-1080. doi:10.1023/B:BILE.0000032968.56387.45

Vikbjerg AF, Mu H, Xu X. 2005a. Lipase-catalyzed acyl exchange of soybean phosphatidylcholine in n-hexane: a critical evaluation of both acyl incorporation and product recovery. Biotechnol. Prog. 21, 397-404. doi:10.1021/bp049633y

Vikbjerg AF, Mu H, Xu X. 2006. Elucidation of acyl migration during lipase-catalyzed production of structured phospholipids. J. Am. Oil Chem. Soc. 83, 607-614. doi:10.1007/s11746-006-1246-3

Vikbjerg AF, Mu H, Xu X. 2007. Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis. J. Biotechnol. 128, 545-554. doi:10.1016/j.jbiotec.2006.11.006

Vikbjerg AF, Peng L, Mu H, Xu X. 2005b. Continuous production of structured phospholipids in a packed bed reactor with lipase from Thermomyces lanuginosa. J. Am. Oil Chem. Soc. 82, 237-242. doi:10.1007/s11746-005-1061-x

Wang XG, Qiu AY, Tao WY, Shen PY. 1997. Synthesis of phosphatidylglycerol from soybean lecithin with immobilized Phospholipase D. J. Am. Oil Chem. Soc. 74, 87-91. doi:10.1007/s11746-997-0149-2

Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support