Grasas y Aceites, Vol 60, No 2 (2009)

Nutritional composition of new Peanut (Arachis hypogaea L.) cultivars

M. G. Campos-Mondragón
Instituto Tecnológico de Veracruz. , Mexico

A. M. Calderón De La Barca
Centro de Investigación en Alimentación y Desarrollo, Hermosillo , Mexico

A. Durán-Prado
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Cotaxtla , Mexico

L. C. Campos-Reyes
Facultad de Nutrición. Universidad Veracruzana. Veracruz , Mexico

R. M. Oliart-Ros
Instituto Tecnológico de Veracruz. , Mexico

J. Ortega-García
Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. Hermosillo , Mexico

L. A. Medina-Juárez
Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. Hermosillo , Mexico

O. Angulo
Instituto Tecnológico de Veracruz. , Mexico


Six peanut (Arachis hypogaea L.) cultivars (Col-24-Gro, Col-61-Gto, VA-81-B, Ranferi Díaz, NC-2 and Florunner) were studied for agricultural yield, chemical composition (protein, fat, carbohydrates, fiber and ash), amino acid profile, digestibility, fatty acid profile, tocopherol and sterol contents. Results indicated that Ranferi Díaz and Col-61-Gto presented the highest yield (6.3 Ton/ha). Protein content was from 23.5 to 26.6% and fat content ranged from 49.8-53.4%. Mean digestibility was 86%. Lysine and threonine levels in all cultivars were sufficient to meet human requirements. Total saturated fatty acids ranged from 15-18%. The oleic/linoleic ratio was estimated 1.3-1.4. Tocopherol levels varied from 390 to 706 ppm. The highest tocopherol levels corresponded to the cultivars with the lowest yield. The alpha tocopherol content was estimated at 90-150 ppm, while gamma tocopherol was 270-570 ppm.The main sterol present was βsitosterol (approx. 65%). Ranferi Diaz variety presented the highest agronomic yield and the highest protein content but low oleic acid, low sterols and low total tocopherols. The differences among cultivars suggest differences in their applications.


rachis hypogaea L.; Chemical composition; Digestibility; Peanuts; Sterols; Tocopherols

Full Text:



AOAC. 1995. Official Methods of analysis of the Association of Official Agricultural Chemist. (16th Ed.), edited by P. Cunniff AOCS International, Gaithersburg, MD.

AOCS. 1998. Official methods and recommended practices of the American Oil Chemists’ Society. (5th Ed.), edited by Firestone D, AOCS Press, Champaign, IL.

Al-Karaki G, Hammouri M. 1999. Relationship between seed yield and seed chemical composition in kabuli chickpea under semiarid Mediterranean conditions. Acta Agronómica Hungárica 47, 435-439.

Alper C, Mattes R. 2003. Peanut consumption improves indices of cardiovascular disease risk in healthy adults. J. Am. College of Nutr. 22,133-141.

Awad A, Chan K, Downie A, Fink C. 2000. Peanuts as a source of beta-sitosterol, a sterol with anticancer properties. Nutr. Cancer 36, 238-241. doi:10.1207/S15327914NC3602_14

Branch W, Nakayama T, Chinnan M. 1990. Fatty acid variation among U.S runner peanut cultivars. J. Am. Oil Chem. Soc. 9, 591-593. doi:10.1007/BF02540772

Britz S.J, Kremer D.F, Kenworthy W.J. 2008. Tocopherols in Soybean Seeds: Genetic Variation and Environmental Effects in Field-Grown Crops. J. Am. Oil Chem. Soc. 85, 931–936. doi:10.1007/s11746-008-1286-y

Casini C, Dardonelli J, Martínez M, Balzarini M, Borgogno C, Nassetta M. 2003. Oil quality and sugar content of peanuts (Arachis hypogaea L.) grown in Argentina: their relationship with climatic variables and seed yield. J. Agric. Food Chem. 5, 6309-6313. doi:10.1021/jf030183j

Coates A, Howe P. 2007. Edible Nuts and Metabolic Health. Current Opin. Lipidol. 18, 25-30.

Demmig-Adams B, Adams W. 2003. Antioxidants in Photosynthesis and Human Nutrition. Science. 29, 2149-2153.

Figueroa P, Gerritsen P, Villalvazo V, Cruz G. 2005. Articulando la sustenibilidad ecológica, económica y social: el caso del cacahuate orgánico. Economía, Sociedad y Territorio. 19:477-497

Golombek D, Sridhar R, Singh U. 1995. Effect of soil temperature on the seed composition of three Spanish cultivars of groundnut (Arachis hypogaea L.). J. Agric. Food Chem. 43, 2067-2070. doi:10.1021/jf00056a021

Grosso N, Guzmán C. 1995. Chemical composition of aboriginal peanut (Arachis hypogaea L.) seeds from Peru. J. Agric. Food Chem. 43, 102-105. doi:10.1021/jf00049a019

Grosso N, Lamarque A, Maestri D, Zygadlo J, Guzmán, C. 1994. Fatty acid variation of runner peanut (Arachis hypogaea L.) among geographic localities from Cordoba (Argentina). J. Am. Oil Chem. Soc. 71, 541- 542. doi:10.1007/BF02540669

Gutiérrez F, Varona I, Albi M. 2000. Relation of acidity and sensory quality with sterol content of olive oil from stored fruit. J. Agric. Food. Chem. 48, 1106-1110. doi:10.1021/jf9907337

Hashim I, Koehler P, Eitenmiller R. 1993. Tocopherols in Runner and Virginia Peanut Cultivars at Various Maturity Stages. J. Am. Oil Chem. Soc. 70, 633-635. doi:10.1007/BF02545333

Henley E, Kuster, J. 1994. Protein Quality Evaluation by protein digestibility corrected amino acid scoring. J. Food Tech. 48, 74-77.

Holaday C, Pearson J. 1974. Effects of Genotype and Production area on de fatty acid composition, total oil and total protein in peanuts. J. Food Sci. 39, 1206-1209. doi:10.1111/j.1365-2621.1974.tb07355.x

Holen B. 1985. Rapid Separation of free sterols by reversed-phase high performance liquid chromatographic determination of free amino acids in shrimp. J. Am. Oil Chem. Soc. 62, 1344-1346. doi:10.1007/BF02545955

Hsu H, Vavak D, Satterlee L, Miller G. 1977. A multienzyme technique for estimating protein digestibility. J. Food Sci. 42, 1269-1273. doi:10.1111/j.1365-2621.1977.tb14476.x

Hui Y. 1996. Edible Oil and Fat Products: Oils and Oilseeds. Bailey’s Industrial Oil and Fat Products. John Wiley and Sons, Inc. (Fifth Ed.) Volume 2, pp. 386.

Isleib T, Patte H, Sanders T, Hendrix K, Dean L. 2006. Compositional and Sensory Comparisons between Normal- and High oleic peanuts. J. Agric. Food Chem. 54, 179-1763. doi:10.1021/jf052353t

Jiang R, Manson J, Stampfer M, Liu S, Willett W, Hu F. 2002. Nut and peanut butter consumption and risk of type 2 diabetes in women. J. Am. Medical Assoc. 20, 2554-2560. doi:10.1001/jama.288.20.2554

Jonnala R, Dunford N, Chenault K. 2006a. Tocopherol, phytosterol, and phospholipid compositions of genetically modified peanut varieties. J. Agric. Food Chem. 86, 473-476. doi:10.1002/jsfa.2372

Jonnala R, Dunford N, Dashiell K. 2005a. New high oleic peanut cultivars grown in the Southwestern US. J. Am. Oil Chem. Soc. 85, 125–128. doi:10.1007/s11746-005-1053-x

Jonnala R, Dunford N, Dashiell K. 2006b. Tocopherol, phytosterol, and phospholipids compositions of new high oleic peanut cultivars. J. Food Composition and Analysis 19, 601-605. doi:10.1016/j.jfca.2006.01.005

Jonnala R.S, Dunford N.T, Chenault K. 2005b. Nutritional composition of genetically modified peanut varieties. J. Food Sci. 70, S254-S256.

Kamal-Eldin A, Andersson R. 1997. A Multivariate Study of the Correlation Between Tocopherol Content and Fatty Acid Composition on Vegetable Oils. J. Am. Oil Chem Soc. 74, 375-380. doi:10.1007/s11746-997-0093-1

Kris-Etherton P, Pearson T, Wan Y, Hargrove R, Moriarty K, Fishell V, Etherton T. 1999. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglyceron concentrations. Am. J. Clin. Nutr. 70, 1009-1015.

Lira R, Arredondo P. 2004. Oxido nítrico: un héroe disfrazado de villano. Ciencia y Cultura 53, 11-18.

Medina-Juarez L.A., Gámez-Meza N, Ortega-García J, Noriega-Rodriguez J, and Angulo O. 2000.Trans Fatty Acid Composition and Tocopherol Content in Vegetable Oils Produced in Mexico. J. Am. Oil Chem. Soc. 77, 721-724. doi:10.1007/s11746-000-0116-3

Messina M. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70, 439S-450S.

Oury F, Berard P, Brancourt H, Depatureaux C, Doussinault G, Galic N, Giraud A, Heumez E, Lecomte C, Pluchard P, Rolland B, Rousset M, Trottet M. 2003. Yield and grain protein concentration in bread wheat: a review and a study of multi-annual data from a French breeding program. J. Genet. Breed. 57, 59-68.

Reeds J. 2000. Dispensable and Indispensable Amino Acids for Humans. Am. Soc. Nutri. Sci. 130, 18355-18405.

Sanders T, McMichael W, Hendrix W. 2000. Occurrence of resveratrol in edible peanauts. J. Agric. Food Chem. 48, 1243-1246. doi:10.1021/jf990737b

Tuberoso C, Kowalczyk A, Sarritzu E, Cabras P. 2007. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. J. Food Chem. 103, 1494-1501. doi:10.1016/j.foodchem.2006.08.014

USDA-NASS. 2004.Peanuts: area, yield, and production in specified countries and the world (1999-2002) Table 3- 25.

Valenzuela A, Ronco A. 2004. Fitoesteroles y fitoestanoles: aliados naturales para la proteccion de la salud cardiovascular. Rev. Chil. Nutr. 31, 161-169.

Vázquez-Ortiz F, Caire G, Higuera-Ciapara I, Hernández G. 1995. High performance liquid chromatographic determination of free amino acids in shrimp. J. Liq. Chrom. 18, 2059-2068. doi:10.1080/10826079508013960

Venkatachalam M, Sathe S. 2006. Chemical Composition of Selected Edible Nut Seeds. J. Agric. Food Chem. 54, 4705-4714. doi:10.1021/jf0606959

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support