Grasas y Aceites, Vol 64, No 3 (2013)

Lipase-catalyzed glycerolysis of fish oil to obtain diacylglycerols


https://doi.org/10.3989/gya.084412

R. Baeza-Jiménez
Departamento de Biocatálisis. Instituto de Catálisis y Petroleoquímica, CSIC, Spain

K. Miranda
Departamento de Biocatálisis. Instituto de Catálisis y Petroleoquímica, CSIC, Spain

H. S. García
UNIDA, Instituto Tecnológico de Veracruz, Mexico

C. Otero
Departamento de Biocatálisis. Instituto de Catálisis y Petroleoquímica, CSIC, Spain

Abstract


Diacylglycerols (DAG) rich in n-3 residues were successfully produced by Novozym 435-catalysed glycerolysis of n-3 PUFA rich fish oil. Orbital and magnetic agitations were evaluated in order to minimize mass transfer limitations and thus assure the homogeneity of the reactant mixture. Different temperatures (65, 70, 75, 80, 85 and 90 °C) and speeds (300, 500, 700 and 900 rpm) were tested. Optimal conditions to obtain the highest amount of DAG were: 65 °C, with a substrate molar ratio of 3:1 (oil:glycerol), 500 rpm and 15% enzyme load after 2.5 h, with a yield of 60%.

Keywords


Diacylglycerols; Fish oil; Glycerolysis; Novozym 435

Full Text:


PDF

References


Babicz I, Leite SGF, De Souza ROMA, Antunes OAC.2010. Lipase-catalyzed diacylglycerol production under sonochemical irradiation. Ultrason Sonochem. 17, 4-6. http://dx.doi.org/10.1016/j.ultsonch.2009.07.005 PMid:19692284

Camino-Feltes MM, Oliveira JV, Treichel H, Mara-Block J, De Oliveira D, Ninow JL. 2010. Assessment of process parameters on the production of diglycerides rich in omega-3 fatty acids through the enzymatic glycerolysis of fish oil. Eur. Food Res. Technol. 231, 701-710. http://dx.doi.org/10.1007/s00217-010-1325-4

Camino-Feltes MM, De Oliveira D, Mara-Block J, Ninow JL. 2012. The production, benefits, and applications of monoacylglycerols and diacylglycerols of nutritional interest. Food Bioproc. Technol. In Press.

Criado M, Otero C. 2010. Optimization of the synthesis of lower glycerides rich in unsaturated fatty acid residues obtained via enzymatic ethanolysis of sesame oil. Eur. J. Lipid Sci. Technol. 8, 921-927.

Fureby AM, Tian L, Adlercreutz P, Mattiasson, B. 1997. Preparation of diglycerides by lipase-catalyzed alcoholysis of triglycerides. Enz. Microb. Technol. 20, 198-206. http://dx.doi.org/10.1016/S0141-0229(96)00133-0

Garcia HS, Arcos JA, Ward DJ, Hill CG. 2000. Synthesis of glycerides containing n-3 fatty acids and conjugated linoleic acid by solvent free acidolysis of fish oil. Biotechnol. Bioeng. 70, 587-591. http://dx.doi.org/10.1002/1097-0290(20001205)70:5<587::AID-BIT13>3.0.CO;2-H

Hernández-Martín E, Otero C. 2008. Selective enzymatic synthesis of lower acylglycerols rich in polyunsaturated fatty acids. Eur. J. Lipid Sci. Technol. 110, 325-333. http://dx.doi.org/10.1002/ejlt.200700190

Jennings B, Akoh CC. 1999. Enzymatic modification of triacylglycerols of high eicosapentaenoic and docosahexaenoic acid content to produce structured lipids. J. Am. Oil Chem. Soc. 76, 1133-1137. http://dx.doi.org/10.1007/s11746-999-0085-4

Kamali R. 1996. Historical perspective and potential use of n-3 fatty acids in therapy of cancer cachexia. Nutrition, 12 (suppl. 1) S2-S4.

Kamphuis MMJW, Mela DJ, Westerterp-Plantenga MS. 2003. Diacylglycerols affect substrate oxidation and appetite in humans. Am. J. Clin. Nutr. 77, 1133-1139. PMid:12716663

Krüger RL, Valério A, Balen M, Ninow JL, Oliveira JV, Oliveira D, Corazza ML. 2010. Improvement of mono and diacylglycerol production via enzymatic glycerolysis in tert-butanol system. Eur. J. Lipid Sci. Technol. 112, 921-927. http://dx.doi.org/10.1002/ejlt.200900253

Murase T, Aoki M, Wakisaka T, Hase T, Tokimitsu I. 2002. Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice: Dietary diacylglycerol stimulates intestinal lipid metabolism. J. Lipid Res. 43, 1312-1319. PMid:12177175

Nagao T, Watanabe H, Goto N, Onizawa K. et al., 2000. Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J. Nutr. 130, 792-797. PMid:10736331 tr> Nettleton JA. 1994. Omega-3 fatty acids and health. New York: Chapman and Hall. PMCid:1072923

Sardesai VM. 1992. Nutritional role of polyunsaturated fatty acids. J. Nutr. Biochem. 3, 154-166. http://dx.doi.org/10.1016/0955-2863(92)90110-5

Simopoulos AP. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nut.r 21, 495-505. PMid:12480795

Torres C, Lin B, Hill, CG. 2002. Lipase-catalyzed glycerolysis of an oil rich in eicosapentaenoic acid residues. Biotechnol. Let.t 24, 667-673. http://dx.doi.org/10.1023/A:1015298728683

Valenzuela A, Valenzuela V, Sanhueza J, Nieto S. 2005. Effect of supplementation with docosahexaenoic acid ethyl ester and sn-2 docosahexaenyl monoacylglyceride on plasma and erythrocyte fatty acids in rats. Ann. Nutr. Meta.b 49, 49-53. http://dx.doi.org/10.1159/000084177 PMid:15735367

Valério A, Rovani S, Treichel H, Oliveira D, Oliveira JV 2010. Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioproc. Biosyst. Eng. 33, 805-812. http://dx.doi.org/10.1007/s00449-009-0402-1 PMid:20091052

Von Schacky C. 2007. N-3 PUFA in CVD: influence of cytokine polymorphism. P. Nutr. Soc. 66, 166-170. http://dx.doi.org/10.1017/S0029665107005411 PMid:17466099

Wang W, Li T, Ning Z, Wang Y, Yang B, Yang X. 2011. Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enz. Microb. Technol. 49, 192- 196. http://dx.doi.org/10.1016/j.enzmictec.2011.05.001 PMid:22112408

Xu X, Fomuso LB, Akoh CC. 2000. Modification of menhaden oil by enzymatic acidolysis to produce structured lipids: optimization by response surface design in a packed bed reactor. J. Am. Oil Chem. Soc. 77, 171-176. http://dx.doi.org/10.1007/s11746-000-0027-3

Yuan QG, Ramprasath VR, Harding SV, Rideout TC et al., 2010. Diacylglycerol oil reduces body fat but does not alter energy or lipid metabolism in overweight, hypertriglyceridemic women. J. Nutr. 140, 1122- 1126 http://dx.doi.org/10.3945/jn.110.121665 PMid:20410085

Zhang W, Long Y, Zhang J, Wang C. 2007. Modulatory effects of EPA and DHA on proliferation and apoptosis of pancreatic cancer cells. J. Huazhong. Univ. Sci. Technol. Med. Sci. 27, 547-550. http://dx.doi.org/10.1007/s11596-007-0518-y PMid:18060632




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es