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SUMMARY: Buriti oil is an example of an Amazonian palm oil of economic importance. The local popula-
tion uses this oil for the prevention and treatment of different diseases; however, there are few studies in the 
literature that evaluate its properties. In this study, detailed chemical and antioxidant properties of Buriti oil 
were determined. The predominant fatty acid was oleic acid (65.6%) and the main triacylglycerol classes were 
tri-unsaturated (50.0%) and di-unsaturated-mono-saturated (39.3%) triacylglycerols. The positional distribution 
of the classes of fatty acids on the triacylglycerol backbone indicated a saturated and unsaturated fatty acid 
relationship similar in the three-triacylglycerol positions. All tocopherol isomers were present, with a total con-
tent of 2364.1 mg·kg−1. α-tocopherol constitutes 48% of the total tocopherol content, followed by γ- tocopherol 
(45%). Total phenolic (107.0 mg gallic acid equivalent·g−1 oil) and β-carotene (781.6 mg·kg−1) were particularly 
high in this oil. The highest antioxidant activity against the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) 
was obtained at an oil concentration of 50 mg·mL−1 (73.15%). The antioxidant activity evaluated by the Oxygen 
Radical Absorbance Capacity (ORAC) was 95.3 μmol Trolox equivalent·g−1 oil. These results serve to present 
Buriti oil as an Amazonian resource for cosmetic, food and pharmaceuticals purposes.
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RESUMEN: Aceite de buriti de la Amazonia: Caracterización química y potencial antioxidante. El aceite de Buriti 
es un ejemplo de aceite de palma amazónica de gran importancia económica. La población local utiliza este aceite 
para la prevención y el tratamiento de diferentes enfermedades; sin embargo, hay pocos estudios científicos que 
evalúen sus propiedades. En este estudio, se determinaron las propiedades antioxidantes del aceite de Buriti. El 
ácido graso predominante fue el oleico (65,6 %) y las principales clases de triglicéridos fueron tri-insaturadas 
(50,0 %) y Di-insaturados-mono-saturada (39,3 %). La distribución posicional de las clases de ácidos grasos en el 
esqueleto de triacilglicerol indicó una relación de ácidos grasos saturados e insaturados similar en las tres posicio-
nes del triacilglicerol. Todas las isoformas de tocoferol estaban presentes, con un contenido total de 2364.1 mg·kg−1. 
El α-tocoferol constituye el 48 % del contenido total de tocoferol, seguido de γ-tocoferol (45 %). El contenido 
fenólico total (107,0 mg equivalente ácido gálico·g−1 de aceite) y β-caroteno (781,6 mg·kg−1) fueron particularmente 
altos en este aceite. La mayor actividad antioxidante contra el radical 1,1-difenil-2-picrilhidrazil libre (DPPH) se 
obtuvo a una concentración de aceite de 50 mg·mL−1 (73,15 %). La actividad antioxidante evaluadas por la capaci-
dad de absorción de radicales de oxígeno (ORAC) fue 95,3 mmol Trolox equivalente·g−1 de aceite. Estos resultados 
presentan al aceite de Buriti amazónico como buen recurso con fines cosmético, alimenticio y farmacéutico.
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1. INTRODUCTION

Non-conventional vegetable oils have gained a 
pronounced importance because their constituents 
have unique chemical properties. Some of these 
vegetable oils may augment the supply of nutri-
tional and functional products; others have impor-
tance in cosmetic and pharmaceutical applications 
(Ramandan et al., 2009).

In Brazil, and specifically in its Amazonian area, 
a great variety of non-conventional plant oils, with 
many physicochemical and biological properties can 
be found (Bataglion et al., 2014; Pesce et al., 2009). 
A variety of seed oils, from different species, is com-
mercialized in local markets with a variety of alleged 
proprieties (Saraiva et  al., 2009). Buriti (Mauritia 
flexuosa Mart) mesocarp oil is an example of an 
Amazonian palm oil of economic importance. This 
oil is used by the local population as healing, sun-
screen, for the treatment of burns, for the prevention 
of skin aging, and acts as anti-inflammatory and 
antibiotic (Hernández et al., 2009; Silva et al., 2009; 
Rodrigues et al., 2010). The Buriti oil has some fea-
tures similar to palm oil such as its reddish-yellow 
color and its flavor (Pesce et al., 2009).

However, while this oil presents a great poten-
tial for application either alone or in combination 
with other oils, most studies only present data on 
the fatty acid composition, oxidative stability and 
minor components such as carotenes and tocols 
(Pardauil et al., 2011; Silva et al., 2011; Silva et al., 
2009; Albuquerque et  al., 2005; Santos et  al., 
2013a). The specialized literature does not present a 
more detailed assessment of its physical and chemi-
cal characteristics, and parameters such as regio- 
specific distribution are not reported.

In addition, biological studies with Buriti oil 
are scarce, basically relating to assessments of  sun-
screen and cytotoxic potential studies (Zanatta 
et  al., 2010; Zanatta et  al., 2008). Studies on the 
antioxidant activity with this oil are also scarce, 
with results restricted to a single radical (Ferreira 
et al., 2011; Bataglion et al., 2015). Furthermore, 
these studies generally evaluate the antioxidant 
activity of  the oil after fractionation by differ-
ence in polarity and not the intact oil, which 
may adversely affect the results obtained (Espín 
et al., 2000). Research on antioxidant activity has 
shown that products with antioxidant features are 
related to reducing risk of  many diseases in which 

oxidative stress may play a role, especially chronic 
illnesses such as cancer, cardiovascular, inflamma-
tory and neuro-degenerative diseases (Pandey and 
Rizvi, 2009).

Therefore, the objective of this investigation is 
to obtain an information profile about the chemi-
cal nature and antioxidant potential against radi-
cals 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 
Oxygen Radical Absorbance Capacity (ORAC) of 
Buriti mesocarp oil. The results are important to 
verify the cosmetic and nutraceutical potential of 
the Buriti oil. No previous studies in the literature 
have analyzed Buriti oil to this extent.

2. MATERIALS AND METHODS

Crude Buriti oil was bought in a local market 
in the city of Belém, State of Pará, in the Brazilian 
Amazon. All other reagents and solvents were of 
analytical grade.

2.1. Fatty acid composition

Fatty acid methyl esters were prepared according 
to the Hartman and Lago’s method (Hartman and 
Lago, 1973). The fatty acid composition was deter-
mined as previously reported (Basso et al., 2012).

2.2. Regio-specifi c distribution

Proton-decoupled 13C NMR (Nuclear Magnetic 
Resonance) was used to analyze the positional dis-
tribution of the classes of fatty acids on the tri-
acylglycerol (TAG) backbone. The determination 
of  13C was performed at a frequency of  75.8 MHz, 
with a 5 mm multinuclear probe operating at 30 °C 
(Vlahov, 1998).

2.3. Triacylglycerol composition

The fatty acid composition was used to predict 
the groups of TAGs in the non-interesterified blend 
with PrÓleos software (Antoniosi Filho et al., 1995). 
The composition of TAGs present in interesterified 
lipids was analyzed according to the 1,3-random, 
2-random theory (non-random redistribution), 
and 1,2,3-random theory (random redistribution), 
based on the analysis of the regio-specific distribu-
tion described in item 3.4 (D’Agostini and Gioielli, 
2002; Guedes et al., 2014).
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2.4. Minor compounds

Tocopherols

The α, β, γ, and δ- tocopherol contents were deter-
mined by High Performance Liquid Chromatography 
(HPLC), according to the Ce8–89 AOCS method 
(AOCS, 2009). Peaks were identified by comparison 
of their retention times with authentic standards of 
tocopherols and where quantified based on the peak 
areas relative to standard calibration plots by the 
external standard method.

Total carotenoid

The β-carotene content was obtained using the 
method described by Davies (1973). The oil was 
diluted in hexane at a concentration of 0.004 g.mL−1 
and read at 446 nm using a computerized Shimadzu 
Spectrophotometer (Kyoto, Japan).

Total polyphenols

Phenolic compounds were extracted with water-
methanol 60:40 (v v−1). Folin-Ciocalteu reagent 
(Sigma Chemicals) was added to suitable aliquots 
of  the methanolic extracts. After 3 minutes, a 
sodium carbonate solution (35%, w v−1) was added 
to the reaction mixture, which was finally mixed 
and diluted with water to a final volume of 1000 μL. 
The absorbance of  the solution was measured after 
2 h, against a blank sample produced with distilled 
water, on a Shimadzu Spectrophotometer (Kyoto, 
Japan) at a wavelength of  725 nm. Results are given 
as μg mL−1 of  gallic acid (Hrncirik and Fritsche, 
2004).

2.5. Antioxidant assays

DPPH

The DPPH procedure was done according 
to  Vorarat et  al. (2010). The oil is dissolved in 
ethyl  acetate at concentrations of  5, 10, 50 and 
100 mg·mL−1. The reaction mixtures were mixed on 
96-well plates (BMG Labtech 96) and the reaction 
was carried out on a NovoStar Microplate reader 
(BMG LABTECH, Germany) with absorbance fil-
ters for an excitation wavelength of  520 nm after 
16 minutes. Results are presented as a function of 
absorbance (Free radical scavenging activity).

ORAC

The ORAC procedure was carried out according 
to the method of Prior et al. (2003) with some modi-
fication. The assay was carried out on a NovoStar 
Microplate reader with fluorescence filters for an 
excitation wavelength of 485 nm and an emission 

wavelength of 520 nm at 37 °C. The oil (40 mg) was 
diluted to a final volume of 1 mL of a mixture of 
dimethyl sulfoxide (DMSO): Triton X-20 (9:1) and 
stirred for 90 seconds on the ultra turrax (IKA- 
ULTRA-TURRAX®) for 5 min at 4000 rpm. For 
the analysis, 40 μL of this solution was added to 
the 96 well dark microplate. 400 μL of fluoresce 
in solution (70 nM) were added by injectors in the 
microplate reader, followed by 150 μL of AAPH 
(17.2 mg·mL−1, 9.4 μmol/well). Results are expressed 
in terms of trolox equivalents (TE).

2.6. Statistical Analysis

Results were presented as the mean±standard 
deviation from three replicates of each experiment. 
A p-value<0.05 was used to denote significant 
 differences among mean values determined by the 
analysis of variance (ANOVA) with the assistance 
of Statistica 7.0 (StatSoft, Inc., Tulsa, OK) software.

3. RESULTS AND DISCUSSION

3.1. Fatty acid compositions

The results in Table 1 indicate that Buriti oil 
is very rich in oleic acid (65.6%). The fatty acid 
composition also indicates that this oil presents 
palmitic acid as the major saturated fatty acid 
(19.2%). Regarding polyunsaturated fatty acids, 
the concentration in this oil does not exceed 13.3%.

The previous studies which address the fatty 
acid composition of  Buriti oil confirm that oleic 
acid is the major fatty acid, followed by palmitic 
acid. Santos et al. (2013b), using the same tech-
nique to determine the fatty acids employed in 
this study (GC-FID), obtained similar values 
for oleic (71.6) and palmitic (20.8) acids; how-
ever, the values obtained for the polyunsaturated 

TABLE 1. Fatty acid composition of Buriti oil

Fatty acids Buriti (%)

Caprylic acid (C8:0) –

Capric acid (C10:0) –

Lauric acid (C12:0) –

Myristic acid (C14:0) 0.5±0.00

Palmitic acid (C16:0) 19.2±0.03

Stearic acid (C18:0) 1.3±0.00

Oleic acid (C18:1) 65.6±0.0

Linoleic acid (C18:2) 4.9±0.05

Linolenic acid (C18:3) 8.2±0.01

∑ Saturated 21.0

∑ Monounsaturated 65.6

∑ Polyunsaturated 13.2
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linoleic and linolenic acids were lower, at 2.5% 
and 1.4%, respectively. The same difference was 
observed in the study of  Pardauil et  al. (2011). 
Amounts of  polyunsaturated fatty acids simi-
lar to ours were obtained in the study of  Silva 
et  al. (2009). Their methods of  determination 
based on mass spectrometry (MS) also confirm 
that oleic (71%) and palmitic acids (20%) are the 
major fatty acids in Buriti oil, and stearic acid, as 
well as in our study, was also detected (Bataglion 
et al., 2015). This small variation in results is pre-
dictable and may be influenced by many factors, 
such as season, extraction and refining processes 
(Aquino et al., 2012).

The fatty acid profile of Buriti oil reveals the 
lipid as a good source of monounsaturated fatty 
acids. A great interest has been placed in oils that 
contain these fatty acids. The high oleic and low lin-
oleic fatty acid contents help make them more resis-
tant to oxidation than most liquid oils (Santos et al., 
2013a; Silva et al., 2009; O’Brien, 2009). Olive oil is 
a very flavor-stable oil because of the high oleic fatty 
acid content (70–80%) (O’Brien 2009; Criado et al., 
2008). Moreover, interest in oleic acid as a health-
promoting nutrient has expanded in recent years 
(Capurso et  al., 2014; Sales-Campos et  al., 2013). 
Studies using animal cells have shown that oleic 
acid enhanced intra-cellular levels of lipid peroxi-
dation, indicating that the acid can promote good 
adaptive response and increase the tolerance of the 
cells by increasing antioxidant capacity (Haeiwa 
et al., 2014). Thus, the Buriti oil can represent a new 
option of oil rich in oleic acid, and thus, an alterna-
tive to olive oil.

3.2. Regio-specifi c distribution

The fatty acid distribution in TAG affects the 
physical properties, lipolytic and oxidative stability, 
and nutritional availability of lipids (Kolakowska 
and Sikorski, 2002). Buriti oil is characterized by 
a random distribution of oleic and saturated fatty 
acids in all glycerol positions. Polyunsaturated fatty 
acids are located almost exclusively in the sn-2 posi-
tion (Figures 1 and 2).

The high proportion of oleic acid in all glycerol 
positions along with the predominance of poly-
unsaturated fatty acids in the sn-2 position make 
Buriti oil less susceptible to oxidation. In addition, 
the high concentration of saturated fatty acids in the 
sn-2 position of the Buriti oil provides a differen-
tiated regio-specific distribution. In vegetable oils, 
unsaturated fatty acids tend to be located at the sn-2 
position of the glycerol, while the saturated ones 
tend to be located at the sn-1 and sn-3 positions 
(Brockerhoff, 1971). In some applications, such as 
human milk fat substitute production, the aim is to 
enhance vegetable oils with unsaturated fatty acids 
at the sn-2 position, using lipases (Pina-Rodrigues 

and Akoh, 2010). Buriti oil, to present this distribu-
tion of fatty acids naturally can be used for produc-
ing such fats.

The information about the stereo-specific posi-
tional distribution of fatty acids in the Buriti oil can 
be used for the development of the structural lipids 
for food, pharmaceutical and medical purposes.

3.3. Triacylglycerol composition

Triacylglycerol (TAG) composition is key to 
understanding the various physical properties of 
an oil or fat (Buchgraber et  al., 2004). Given the 
high contents in oleic (65.6%) and palmitic (19.2%) 
acids, which are the two major fatty acids in Buriti 
oil, TAG species combining both acids (i.e. oleic- 
 oleic-oleic (OOO) and palmitic-oleic-oleic (POO)), 
were the major species in the oil analyzed. These 
two species account for over 50% of the TAGs 
presented in the oil (Table 2). Oleic-oleic-linolenic 
(OOLn) and palmitic-oleic-palmitic (POP) TAGs 
were also present in a significant percentage in 
Buriti oil (11.1 and 7.4, respectively). The results of 
this study are in agreement with other studies with 

FIGURE 1. Regio-specific distribution of fatty acids at the 
sn-1,3 positions of  Buriti oil.
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FIGURE 2. Regio-specific distribution of fatty acids at the 
sn-2 position of  Buriti oil.
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Buriti oil. Santos et al. (2013b) and Saraiva et al. 
(2009) found OOO (39.8% n 35.6%, respectively) 
and POO (35.9% and 34.5%, respectively), as domi-
nant species, although in the study of  Saraiva et al. 
(2009) a higher concentration of  palmitic-oleic-stea-
ric was obtained (POS, 7.8%) and oleic-oleic-stearic 
(OOS, 10.7%) TAGs and in the study of  Santos 
et  al. (2009) were not detected oleic-  oleic-linoleic 
(OOL) TAG specie. These small differences in the 
TAG species are related to the variation in the con-
centration of  fatty acids (Table 1).

The tri-unsaturated TAGs (U3), prevalent  in 
Buriti oil, with melting points from −14 to 1 °C, are 
important for the softness and lubricity of  some 
products at room temperature, and offer the 
 nutritional benefits of  unsaturated fatty acids. The 
mono- saturated-di-unsaturated (SU2) TAGs, with 
melting points from 1 to 23 °C are important for 
the oral properties and mechanical-performance 
of  some products at room temperature (O’Brien, 
2009; Rodrigues and Gioielli 2003; Bessler and 
Orthoefer 1983).

The TAG composition of Buriti oil is similar to 
olive oil, which presents the TAG OOO (32.5%), 
followed by POO (21.82%), as the main species of 
TAGs (Criado et al., 2008). Both oils have TAG SU2 
between 50 and 60%, and TAG U3 between 38–40% 
(O’Brien, 2009).

The information about the stereo-specific posi-
tional distribution of fatty acids in camellia oil can 

be used for the development of structured lipids for 
food, pharmaceutical, and medical purposes.

3.4. Minor compounds

Tocopherols

Tocopherols are natural antioxidants present in 
fats and oils. The antioxidant activity is due not only 
to the de-activation of free radicals produced by the 
decomposition of lipid hydroperoxides, but also to 
the inhibition of lipid hydroperoxide decomposition 
(Pokorny and Parkányiová, 2005; Makinen et  al., 
2001). In addition, previous studies have shown that 
tocopherols have substancial health benefits such as 
hypocholesteremic, hypolipidemic, anticancer, anti-
inflamatory and antioxidant properties and slow 
down the aging process (Ghaffari et al., 2011; Singh 
and Devaraj 2007; Hau et al., 2006).

The data obtained on the qualitative and quan-
titative composition of tocopherols in Buriti oil 
are summarized in Table 3. This oil is particularly 
rich in tocopherols (2364.1 mg·kg−1) and such high 
values are encountered in a very limited number of 
oils (Tuberoso et al., 2007). Vegetable oils normally 
contain tocopherol concentrations in the range of 
200–1000 mg·kg−1 (Chen et al., 2011).

All tocopherols were present in Buriti oil, wherein 
α- and γ- constituted 93% of the total tocopherol 
content. The α-tocopherol shows the highest vita-
min E activity and is the most effective antioxi-
dant in vivo compared to other isomers (Ghazani 
and Marangini, 2013). γ-tocopherol has a comple-
mentary effect to the α-tocopherol in relation to 
human health (Wagner et  al., 2004). These results 
are similar to those found by Santos et al. (2013a) 
and Rodrigues et al. (2010) where Buriti oil presents 
α-tocopherol as the most important homologue.

Total carotenoid

The search for natural sources of β-carotene 
is of great interest, since only 2% of all com-
mercial β-carotene is naturally produced world-
wide (Dufossé et  al., 2005; Ribeiro et  al., 2011). 
Carotenoids attracted attention because a  number 
of epidemiological studies have revealed that an 

TABLE 2. Classes of TAG in Buriti oil

TAG %

PPO 7.4

MOO 1.2

PPLn 1.0

POO 25.1

POL 3.9

POLn 6.4

SOO 1.6

OOO 28.8

OOL 6.9

OOLn 11.1

OLLn 1.6

OLnLn 1.4

Others 3.6

Sum 100.0

Total SSS 0.9

Total SUS 9.8

Total SUU 39.3

Total UUU 50.0

L: linoleic acid; Ln: linolenic acid;
M: miristic acid; O: oleic acid;
P: palmitic acid; S: stearic acid.

TABLE 3. Minor compounds in Buriti oil

Compounds mg·kg−1

α-tocopherols 1125.0±3.9

β-tocopherols 71.3±0.0

γ-tocopherols 1074.0±3.4

δ-tocopherols 93.8±0.5

Total β-carotene 781.6±67.3

Total phenol (gallic acid equivalent) 107.0±1.2
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increased consumption of a diet rich in carotenoids 
is correlated with a diminished risk for several degen-
erative disorders, including various types of cancer, 
cardiovascular or ophthalmological diseases (Stahl 
and Sies, 2003; Mayne, 1996). The preventive effects 
have been associated with their antioxidant activity, 
protecting cells and  tissues from oxidative damage 
(Sies and Stahl, 1995). Carotenoids also influence 
cellular signaling and may trigger redox-sensitive 
regulatory pathways (Stahl et  al., 2002). The bio-
activity of these compounds depends on the foods 
matrix where they are present. β-carotene which is 
present in oils has a bioactivity six times higher than 
that found in vegetables (Benadé, 2013).

Data about the carotenoid composition in Buriti 
oil are presented in Table 3. The results indicate 
that this oil is one of the richest known sources of 
biological active β-carotene (781. 6 mg·kg−1), which 
imparts the characteristic orange-red color and also 
lends oxidative protection to the oil (Ribeiro et al., 
2011; Benadé, 2013). In the literature, the total 
carotenoid content of Buriti oil fluctuates between 
600  mg·kg−1 to 10,000  mg·kg−1, probably depend-
ing on the varietal selection, the degree of ripe-
ness, agronomical factors, and extraction procedure 
(Santos et al., 2015).

In a study that assess the antioxidant activity 
of carotenoids measured by ferric reducing anti-
oxidant power (FRAP), ABTS bleaching assay 
(α-TEAC), DPPH assay and peroxyl radical scav-
enging assay compared to α-tocopherol, BHA and 
BHT, most of them showed carotenoid as the great-
est antioxidant. The carotenoid tested displayed an 
antioxidant activity more than eight times as high 
as α-tocopherol (Muller et  al., 2011). Due to the 
ability of the carotenoids to quench singlet oxy-
gen, such as the superoxide radical, peroxide radi-
cal and hydroxyl radical, which can be generated by 
exposure to UV radiation, studies using Buriti oil 
in sunscreen formulations are promising (Zanatta 
et al., 2010). In another study, red palm oil, which 
is rich in carotenoids such as Buriti oil (between 500 
and 700 mg·kg−1 total carotenoids), has been used 
to combat vitamin A deficiency in Africa (Benadé, 
2013; Gunstone and Harwood, 2007).

Total polyphenol

Phenolic compounds have significant biological 
potential, especially in preventing oxidative stress, 
inflammation and bacterial infection (Lesjak et al., 
2014). In addition these effects on health, such phe-
nolic compounds, due to their antiradical activity, 
can protect the tocopherols present in the oil and 
prevent the autoxidation of  unsaturated fatty acids, 
increasing the shelf-life of  the oil (Valavanidis 
et al., 2004).

The results in Table 3 show that the Buriti oil is 
a source of phenolic compounds (107.0 mg gallic 

acid equivalents·kg−1). Although the concentration 
of this compound in this oil is not as high as olive oil 
(170–210 mg gallic acid equivalents·kg−1), it is supe-
rior to many other vegetable oils (Tuberoso et  al., 
2007). Non-traditional oils, such as black cumin 
oil, coriander seed oil and niger seed oil, sources 
of bioactive compounds with antioxidant poten-
tial, present phenolic compound concentrations of 
24, 11 and 5 mg·kg−1, respectively, which are lower 
than the one found in Buriti oil, which reinforces 
the great nutritional and health potential of this oil 
(Ramadan et al., 2003).

3.5 Antioxidant assay

DPPH

The assays which determine the antioxidant 
potency of oils can be categorized into two groups: 
tests for radical scavenging ability and tests that 
examine the ability to inhibit lipid oxidation. 
However, the model for scavenging stable free radi-
cals is widely used to estimate the antioxidant prop-
erties in a relatively short time and with reliability 
(Reische et al., 2002; Ramadan and Moersel 2006).

Table 4 shows the antioxidant capacity of Buriti 
oil expressed as percentage of decrease in the 
absorbance (Free radical scavenging activity). As 
a result of a color change from purple to yellow 
the absorbance decreased when the DPPH radical 
was scavenged by an antioxidant through donation 
of hydrogen to form a stable DPPH-H molecule 
(Matthaus, 2002). Thus, a higher percentage of 
absorbance decrease indicates a greater free radical 
scavenger.

The oil was dissolved in ethyl acetate in differ-
ent concentrations (5–100 mg·mL−1) against the free 
radical DPPH. The results demonstrate that a dose-
dependent effect, in general, was noted; the higher 
the oil dose, the stronger the radical scavenging 
ability obtained. However, at the concentration of 
50 mg·mL−1 of oil, free radical scavenging activity 
begins to be stabilized; doubling the oil concentra-
tion increases the free radical scavenging by only 6%.

The choice of  ethyl acetate as solvent was due 
to its ability to dissolve the oil without the need to 
fractionate it. A previous study suggests that the 

TABLE 4. Antioxidant capacity of Buriti 
oil by DPPH assay.

Oil concentration (mg·mL–1) Free radical scavenging activity

5 36.53±1.35ª

10 39.74±1.58ab

50 73.15±1.4a

100 78.07±2.13ab

a, ab - Means with the same letter in the column are not significantly 
different at the 5% significance level.
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assessment of  antioxidant potential without the 
polar and non-polar fractions of  the oil demon-
strate a higher antioxidant potential. This could be 
due to the synergistic effect of  the different anti-
oxidants present in both the non-polar and polar 
fractions (Espín et al., 2000).

Comparison of the results obtained in this study 
with other studies is inaccurate, since experimental 
conditions differ. Different solvents may cause differ-
ences in the antioxidant pattern between the groups’ 
assays, since it has been shown that the solvent may 
affect the hydrogen-donating ability of the anti-
oxidant (Ramadan and Moersel, 2006). However, 
the results of this study, compared to other oils 
with antioxidant activity, suggest that the Buriti oil 
proved to be efficient in DPPH radical scavenging. 
In a study with olive oil, which has a fatty acid and 
TAG composition similar to Buriti oil, it is observed 
that olive oil reduced the free radical DPPH by 8.8% 
after 60 minutes of reaction (Ramadan and Moersel, 
2006). In this same study, coriander seed oil was able 
to quench the free radical in 26.7% after 60 minutes 
of reaction. Coriander seed oil is rich in oleic acid 
(67%) and presents a carotenoid concentration of 
892 mg·kg−1; physicochemical characteristics which 
are similar to Buriti oil.

Some studies evaluate the results of DPPH in 
EC50, defined as the concentration in mg·mL−1 
required to scavenge 50% of the DPPH free radical. 
In a study with Buriti oil, using chloroform as a sol-
vent, it was found that the oil’s antioxidant capac-
ity is similar to other oils from the Amazonian area, 
with EC50 7.7 mg·mL−1 (Ferreira et al., 2011). The 
results, although impossible to compare with those 
obtained in this study, confirm the antioxidant 
potential of Buriti oil against the DPPH radical.

ORAC

The ORAC assay measures the oxidative degra-
dation of the fluorescent molecule, namely fluo-
rescein. In the presence of antioxidants, loss in 
fluorescence in the fluorescein is inhibited and this 
inhibition is directly related to antioxidant activity 
(Miraliakbari and Shahidi, 2008).

The ORAC value found for Buriti oil was 95.3 
μmol TE·g−1 oil, a value similar to other oils rich in 
minor compounds and known for positive health 
effects (Zullo and Ciafardini, 2008; Dhavamani 
et  al., 2014). Although, as with the DPPH analy-
sis, comparison of  the results of  this study with 
other studies it is inaccurate, and serves only as a 
reference. No other study assessing the antioxidant 
activity of  Buriti oil without its fractionation was 
found, but a study that evaluated the ORAC value 
of  the lipophilic and hydrophilic fractions of  this 
oil indicated that the hydrophilic fraction (8.3 μmol 
TE·g−1 oil), due to synergistic effects of  the pool 
of  antioxidants, presents a value almost 5  times 

higher than the lipophilic fraction (1.8 μmol TE·g−1 
oil) (Bataglion et al., 2015). When comparing these 
results with those obtained in our study, the big 
difference in the total ORAC (95.3 and 10.1 μmol 
TE·g−1 oil, respectively) is, as mentioned above, due 
to the synergistic effect of  the different antioxidants 
present in both non- polar and polar fractions, type 
of  solvent used or even oil characteristics. When 
comparing the results with various integral olive 
oils from Italy, known for high antioxidant poten-
tial, the total ORAC value found was between 
146–280 μmol TE·g−1 oil, relatively close to those 
obtained in our study (Zullo and Ciafardini, 2008). 
In another study that evaluated the antioxidant 
activity of  various oils rich in minor compounds, 
rice bran oil  presented an ORAC content of 
130.0 μg TE·mg−1, sesame oil 122 μg TE·mg−1, olive 
oil 111 μg TE·mg−1 and palm oil 79 μg TE.mg−1 

(Dhavamani et al., 2014). These results indicate that 
Buriti oil, as well as with the DPPH assay, is a good 
antioxidant in the ORAC assay.

The antioxidant activity of bioactive compounds 
is related to the preservation of chain initiation by 
binding oxygen or catalytic metal ions to delay the 
oxidation, decomposition of peroxides, preven-
tion of continued hydrogen abstraction and radi-
cal scavenging protecting against oxidative damage 
to DNA, proteins and lipids (Marineli et al., 2014; 
Halliwell, 1994). The use of Buriti oil in cosmetic 
formulations, food and pharmaceuticals could be 
interesting for health improvement. This result rein-
forces the importance to comprehensively evaluate 
the chemical composition and antioxidant proper-
ties of unexplored Amazonian oils.

5. CONCLUSIONS

Amazonian vegetable oils have attracted atten-
tion because of their often-remarkable biological 
properties. Many oils are known to possess biologi-
cal properties and have been used by the local popu-
lation to treat many diseases. Enlarging the scientific 
data on the chemical, technological and biological 
properties of the Amazon Buriti oil can facilitate 
the development of industrial applications for this 
non-conventional oilseed.
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