Role of lactic acid bacteria in fermented vegetables

Authors

DOI:

https://doi.org/10.3989/gya.0344191

Keywords:

Biofilms, LAB biodiversity, Multifunctional starters, Vegetables

Abstract


The consumption of fermented vegetables is widespread throughout the world and represents an important component of the human diet with considerable contribution to the food supply for a world popula­tion in continuous growth. Many of the fermented vegetables share a general process which requires salting and acidification steps. Among the microorganisms responsible for fermentation, lactic acid bacteria are the most relevant with important organoleptic, quality and safety benefits. This review deals with the microbial ecology of fermented vegetables focusing on the biodiversity of lactic acid bacteria, the most important molecular tech­niques used for their identification and genotyping, their importance for the formation of biofilms as well as their use as starter cultures for obtaining high-quality and safe vegetable products.

Downloads

Download data is not yet available.

References

Abriouel H, Benomar N, Cobo A, Caballero N, Fernández-Fuentes MÁ, Pérez-Pulido R, Gálvez A. 2012. Characterization of lactic acid bacteria from natu­rally-fermented Manzanilla Aloreña green table olives. Food Microbiol. 32, 308-316. https://doi.org/10.1016/j.fm.2012.07.006 PMid:22986194

Abriouel H, Benomar N, Lucas R, Gálvez A. 2011. Culture-independent study of the diversity of microbial popula­tions in brines during fermentation of naturally-fermented Aloreña green table olives. Int. J. Food Microbiol. 144, 487-496. https://doi.org/10.1016/j.ijfoodmicro.2010.11.006 PMid:21122933

Ampe F, ben Omar N, Moizan C, Wacher C, Guyot JP. 1999. Polyphasic study of the spatial distribution of microorgan­isms in Mexican pozol, a fermented maize dough, dem­onstrates the need for cultivation-independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65, 5464-5473 https://doi.org/10.1128/AEM.65.12.5464-5473.1999 PMid:10584005 PMCid:PMC91745

Andersson RE, Daeschel MA, Eriksson CE. 1988. Controlled lactic acid fermentation of vegetables. In Proceedings: 8th International Biotechnology Symposium, Paris 1988/edited by G. Durand, L. Bobichon, J. Florent. [Paris, France]: Societe francaise de microbiologie, c1988.

Aponte M, Blaiotta G, Croce FL, Mazzaglia A, Farina, V, Settanni L, Moschetti G. 2012. Use of selected autoch­thonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiol. 30, 8-16. https://doi.org/10.1016/j.fm.2011.10.005 PMid:22265277

Argyri AA, Zoumpopoulou G, Karatzas KA, Tsakalidou E, Nychas GJ, Panagou EZ, Tassou CC. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282-291. https://doi.org/10.1016/j.fm.2012.10.005 PMid:23200662

Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A. 2008. Role of yeasts in table olive produc­tion. Int. J. Food Microbiol. 128, 189-196. https://doi.org/10.1016/j.ijfoodmicro.2008.08.018 PMid:18835502

Arroyo-López FN, Bautista-Gallego J, Domínguez-Manzano J, Romero-Gil V, Rodríguez-Gómez F, García-García P, Garrido-Fernández A, Jiménez-Díaz R. 2012a. Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiol. 32, 295-301. https://doi.org/10.1016/j.fm.2012.07.003 PMid:22986192

Arroyo-López FN, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García-García P, Querol A, Garrido-Fernández A. 2012b. Yeasts in table olive processing: desirable or spoilage microorganisms? Int. J. Food Microbiol. 160, 42-49. https://doi.org/10.1016/j.ijfoodmicro.2012.08.003 PMid:23141644

Arroyo-López FN, Blanquet-Diot S, Denis S, Thévenot J, Chalancon S, Alric, M, Rodríguez-Gómez F, Romero-Gil V, Jiménez Díaz R, Garrido-Fernández A. 2014. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion. Front. Microbiol. 5, 540. https://doi.org/10.3389/fmicb.2014.00540 PMid:25352842 PMCid:PMC4196563

Babuchowsk A, Laniewska-Moroz L, Warminska-Radyko I. 1999. Propionibacteria in fermented vegetables. Lait 79, 113-124. https://doi.org/10.1051/lait:199919

Bautista-Gallego J, Arroyo-López FN, Rantsiou K, Jiménez-Díaz R, Garrido-Fernández A, Cocolin LS. 2013. Screening of lactic acid bacteria isolated from fermented table olives with probiotic potential. Food Res. Int. 50, 135-142. https://doi.org/10.1016/j.foodres.2012.10.004

Bellis P de, Valerio F, Sisto A, Lonigro SL, Lavermicocca P. 2010. Probiotic table olives: microbial populations adher­ing on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. Int. J. Food Microbiol. 140, 6-13. https://doi.org/10.1016/j.ijfoodmicro.2010.02.024 PMid:20226556

Benítez-Cabello A, Bautista-Gallego J, Garrido-Fernández A, Rantsiou K, Cocolin L, Jiménez-Díaz R, Arroyo-López FN. 2016. RT-PCR-DGGE Analysis to Elucidate the Dominant Bacterial Species of Industrial Spanish-Style Green Table Olive Fermentations. Front Microbiol. 7, 1291. https://doi.org/10.3389/fmicb.2016.01291 PMid:27582739 PMCid:PMC4987347

Benítez-Cabello A, Calero-Delgado B, Rodríguez-Gómez F, Garrido-Fernández A, Jiménez-Díaz R, Arroyo-López FN. 2019. Biodiversity and multifunctional features of lactic acid bacteria isolated from table olive biofilms. Front. Microbiol. 10 (3), Art 836. https://doi.org/10.3389/fmicb.2019.00836 PMid:31057529 PMCid:PMC6479189

Botta C, Cocolin L. 2012. Microbial dynamics and biodiver­sity in table olive fermentation: culture-dependent and -independent approaches. Front Microbiol. 3, 245. https://doi.org/10.3389/fmicb.2012.00245 PMid:22783248 PMCid:PMC3390769

Botta C, Langerholc T, Cencič A, Cocolin L. 2014. In vitro selection and characterization of new probiotic candidates from table olive microbiota. Plos One. 9 (4). https://doi.org/10.1371/journal.pone.0094457 PMid:24714329 PMCid:PMC3979845

Breidt F, Medina E, Wafa D, Pérez-Díaz I, Franco W, Huang, HY, Johanningsmeier SD, Kim JH. 2013a. Characterization of cucumber fermentation spoilage bacteria by enrichment culture and 16S rDNA cloning. J. Food Sci. 78, M470-476. https://doi.org/10.1111/1750-3841.12057 PMid:23458751

Breidt F, McFeeters RF, Perez-Diaz I, Lee C. 2013b. Fermented vegetables. Ch. 33 in Doyle and Buchanan, Food Microbiology: Fundamentals and Frontiers, ASM Press. https://doi.org/10.1128/9781555818463.ch33

Cagno R di, Coda R, De Angelis M, Gobbetti M. 2013. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 33, 1-10. https://doi.org/10.1016/j.fm.2012.09.003 PMid:23122495

Castro A de, Rejano L, Sánchez AH, Montaño A. 1995. Fermentation of lye-treated carrots by Lactobacillus plantarum. J. Food Sci. 60, 316-319. https://doi.org/10.1111/j.1365-2621.1995.tb05663.x

Castro A de, Sánchez AH, López-López A, Cortés-Delgado A, Medina E, Montaño A. 2018. Microbiota and Metabolite Profiling of Spoiled Spanish-Style Green Table Olives. Metabolites 8, 73. https://doi.org/10.3390/metabo8040073 PMid:30384453 PMCid:PMC6316098

Cocolin L, Ercolini D. 2007. Molecular techniques in the microbial ecology of fermented foods, Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74520-6

Corsetti A, Perpetuini G, Schirone M, Tofalo R, Suzzi G. 2012. Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front Microbiol. 3. https://doi.org/10.3389/fmicb.2012.00248

Costilow RN, Gates K, Lacy ML. 1980. Molds in brined cucum­bers: cause of softening during air-purging of fermenta­tions. Appl. Environ. Microbiol. 40, 417-422. https://doi.org/10.1128/aem.40.2.417-422.1980 PMid:16345619 PMCid:PMC291590

Domínguez-Manzano J, Olmo-Ruiz C, Bautista-Gallego J, Arroyo-López FN, Garrido-Fernández, A, Jiménez-Díaz R. 2012. Biofilm formation on abiotic and biotic surfaces during Spanish style green table olive fermenta­tion. Int. J. Food Microbiol. 157, 230-238. https://doi.org/10.1016/j.ijfoodmicro.2012.05.011 PMid:22656327

Elmacı SB, Tokatlı M, Dursun D, Özçelik F, Şanlıbaba P. 2015. Phenotypic and genotypic identification of lactic acid bacteria isolated from traditional pickles of the Çubuk region in Turkey. Folia Microbiol. 60, 241-251. https://doi.org/10.1007/s12223-014-0363-x PMid:25404550

Etchells JL, Bell TA. 1950. Classification of yeasts from the fer­mentation of commercially brined cucumbers. Farlowia 4, 87-112. https://doi.org/10.5962/p.315957

Etchells JL, Jones ID. 1943. Bacteriological changes in cucum­ber fermentation. Food Industries 15, 54-56.

Ferrocino I, Cocolin L. 2017. Current perspectives in food-based studies exploiting multi-omics approaches. Curr. Opin. Food Sci. 13, 10-15. https://doi.org/10.1016/j.cofs.2017.01.002

Fleming HP, Etchells JL, Thompson RL, Bell TA. 1975. Purging of Co2 from Cucumber Brines to Reduce Bloater Damage. J. Food.Sci. 40, 1304-1310. https://doi.org/10.1111/j.1365-2621.1975.tb01078.x

Franco W, Pérez-Díaz IM. 2013. Microbial interactions asso­ciated with secondary cucumber fermentation. J. Appl. Microbiol. 114, 161-172. https://doi.org/10.1111/jam.12022 PMid:23013318

Franco W, Pérez-Díaz IM, Johanningsmeier SD, McFeeters RF. 2012. Characteristics of Spoilage-Associated Secondary Cucumber Fermentation. Appl. Environ Microbiol. 78, 1273-1284. https://doi.org/10.1128/AEM.06605-11 PMid:22179234 PMCid:PMC3273025

Franzetti L, Scarpellini M, Vecchio A, Planeta D. 2011. Microbiological and safety evaluation of green table olives marketed in Italy. Ann. Microbiol. 61, 843-851. https://doi.org/10.1007/s13213-011-0205-x

Garrido-Fernández A, Adams MR, Fernández-Díez MJ. 1997. Table olives: production and processing, Springer Science & Business Media. https://doi.org/10.1007/978-1-4899-4683-6

Gebbers JO. 2007. Atherosclerosis, cholesterol, nutrition, and statins-a critical review. GMS Ger. Med. Sci. 5, 4.

Gililland JR, Vaughn RH. 1943. Characteristics of butyric acid bacteria from olives. J. Bacteriol. 46, 315. https://doi.org/10.1128/jb.46.4.315-322.1943 PMid:16560706 PMCid:PMC373823

González-Cancho F, Rejano-Navarro L, Rodríguez de la Borbolla, Alcalá JM. 1980. Formation of propionic acid during the conservation of table green olives, 3: Responsible microorganisms. Grasas Aceites 31, 245-250.

González-Ortiz G, Pérez JF, Gustavo-Hermes R, Molist F, Jiménez-Díaz R, Martín-Orue S. 2013. Screening the abil­ity of natural feed ingredients to interfere with the adher­ence of enterotoxigenic Escherichia coli (ETEC) K88 to the porcine intestinal mucus. British J. Nutr. 111, 633-642. https://doi.org/10.1017/S0007114513003024 PMid:24047890

Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JA. 2010. Functional foods and nondairy probiotic food development: trends, concepts, and products. Compr. Rev. Food Sci. Food Saf. 9 (3), 292-302. https://doi.org/10.1111/j.1541-4337.2010.00110.x PMid:33467814

Hernández A, Martín A, Aranda E, Pérez-Nevado F, Córdoba MG. 2007. Identification and characterization of yeast iso­lated from the elaboration of seasoned green table olives. Food Microbiol. 24, 346-351. https://doi.org/10.1016/j.fm.2006.07.022 PMid:17189760

Hong Y, Li J, Qin P, Lee SY, Kim HY. 2015. Predominant lac­tic acid bacteria in mukeunji, a long-term-aged kimchi, for different aging periods. Food Sci. Biotechnol. 24, 545-550. https://doi.org/10.1007/s10068-015-0071-6

Hurtado A, Reguant C, Bordons A, Rozès N. 2012. Lactic acid bacteria from fermented table olives. Food Microbiol. 31, 1-8. https://doi.org/10.1016/j.fm.2012.01.006 PMid:22475936

Jang S, Lee J, Jung U, Choi HS, Suh HJ. 2014. Identification of an anti-listerial domain from Pediococcus pentosaceus T1 derived from Kimchi, a traditional fermented veg­etable. Food Control 43, 42-48. https://doi.org/10.1016/j.foodcont.2014.02.040

Ji K, Jang NY, Kim YT. 2015. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces. J. Microbiol. Biotechnol. 25, 1568-1577. https://doi.org/10.4014/jmb.1501.01077 PMid:25951843

Johanningsmeier S, McFeeters RF, Fleming HP, Thompson RL. 2007. Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. J. Food Sci. 72, M166-172. https://doi.org/10.1111/j.1750-3841.2007.00372.x PMid:17995739

Johanningsmeier SD, McFeeters RF. 2013. Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations. Food Microbiol. 35, 129-135. https://doi.org/10.1016/j.fm.2013.03.004 PMid:23664264

Jung JY, Lee SH, Jin HM, Hahn Y, Madsen EL, Jeon CO. 2013. Metatranscriptomic analysis of lactic acid bacte­rial gene expression during kimchi fermentation. Int. J. Food Microbiol. 163, 171-179. https://doi.org/10.1016/j.ijfoodmicro.2013.02.022 PMid:23558201

Kawatomari T, Vaughn RH. 1956. Species of Clostridium asso­ciated with zapatera spoilages. J. Food Sci. 21, 481-490. https://doi.org/10.1111/j.1365-2621.1956.tb16946.x

Kim E, Cho Y, Lee Y, Han SK, Kim CG, Choo DW, Kim YR, Kim HY. 2017. A proteomic approach for rapid identifica­tion of Weissella species isolated from Korean fermented foods on MALDI-TOF MS supplemented with an in-house database. Int. J. Food Microbiol. 243, 9-15. https://doi.org/10.1016/j.ijfoodmicro.2016.11.027 PMid:27936381

Kyung KH, Medina E, Kim SG, Lee YJ, Kim KH, Choi JJ, Cho JH, Chung CH, Barrangou R, Breidt F. 2015. Microbial Ecology of Watery Kimchi. Food Control 80, M1031-8. https://doi.org/10.1111/1750-3841.12848 PMid:25847522

Lavermicocca P, Valerio F, Lonigro SL, Angelis MD, Morelli L, Callegari ML, Rizzello CG, Visconti A. 2005. Study of Adhesion and Survival of Lactobacilli and Bifidobacteria on Table Olives with the Aim of Formulating a New Probiotic Food. Appl. Environ. Microbiol. 71, 4233-4240. https://doi.org/10.1128/AEM.71.8.4233-4240.2005 PMid:16085808 PMCid:PMC1183302

Lee JS, Heo GY, Lee JW, Oh YJ, Park JA Park YH, Pyun YR, Ahn JS. 2005. Analysis of kimchi microflora using denatur­ing gradient gel electrophoresis. Int. J. Food Microbiol. 102, 143-150. https://doi.org/10.1016/j.ijfoodmicro.2004.12.010 PMid:15992614

Lee ME, Jang JY, Lee JH, Park HW, Choi HJ, Kim TW. 2015. Starter cultures for kimchi fermentation. J. Microbiol. Biotechnol. 25, 559-568. https://doi.org/10.4014/jmb.1501.01019 PMid:25674806

León-Romero Á, Domínguez-Manzano J, Garrido-Fernández A, Arroyo-López FN, Jiménez-Díaz R. 2016. Formation of in vitro mixed-species biofilms by Lactobacillus pento­sus and yeasts isolated from Spanish-style green table olive Fermentations. Appl. Environ. Microbiol. 82, 689-695. https://doi.org/10.1128/AEM.02727-15 PMid:26567305 PMCid:PMC4711112

Lucena-Padrós H, Caballero-Guerrero B, Maldonado-Barragán A, Ruiz Barba JL. 2014. Microbial diversity and dynam­ics of Spanish-style green table-olive fermentations in large manufacturing companies through culture-depen­dent Techniques. Food Microbiol. 42, 154-165. https://doi.org/10.1016/j.fm.2014.03.020 PMid:24929732

Lucena-Padrós H, Jiménez E, Maldonado-Barragán M, Rodriguez JM, Ruiz-Barba JL. 2015. PCR-DGGE assess­ment of the bacterial diversity in Spanish-style green table olive fermentations. Int. J. Food Microbiol. 205, 47-53. https://doi.org/10.1016/j.ijfoodmicro.2015.03.033 PMid:25886017

Luke FK. 1996. Lactic acid bacteria involved in food fermenta­tions and their present and future uses in food industry. Lactic Acid Bacteria: Current Advances in Metabolism, Genetics and Applications. Vol. H98. Ed. Faruk Bozoglu and Bibek Ray. Springer-Verlag Berlin Heidelberg.

Mattos FR, Fasina OO, Reina LD, Fleming HP, Breidt F, Damasceno GS, Passos FV. 2005. Heat Transfer and Microbial Kinetics Modeling to Determine the Location of Microorganisms within Cucumber Fruit. J. Food Sci. 70, E324-E330. https://doi.org/10.1111/j.1365-2621.2005.tb09972.x

Medina E, Arroyo-López FN. 2015. Presence of toxic microbial metabolites in table olives. Front. Microbiol. 6. https://doi.org/10.3389/fmicb.2015.00873 PMid:26379648 PMCid:PMC4552003

Medina E, Pérez Díaz IM, Breidt F, Hayes J, Franco W, Butz N, Azcarate Peril MA. 2016. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Nonculture-Based Methods. J. Food Sci. 81, M121-M129. https://doi.org/10.1111/1750-3841.13158 PMid:26605993 PMCid:PMC4973622

Medina E, Ruiz-Bellido MA, Romero-Gil V, Rodríguez-Gómez F, Montes-Borrego M, Landa BB, Arroyo-López FN. 2016. Assessment of the bacterial community in directly brined Aloreña de Málaga table olive fermentations by metagenetic analysis. Int. J. Food Microbiol. 236, 47-55. https://doi.org/10.1016/j.ijfoodmicro.2016.07.014 PMid:27442850

Medina E, Brenes M, García P, Romero C. 2018. Microbial ecol­ogy along the processing of Spanish olives darkened by oxidation. Food Control 86, 35-41. https://doi.org/10.1016/j.foodcont.2017.10.035

Montet D, Ray RC, Zakhia-Rozis N. 2014. Lactic Acid Fermentation of Vegetables and Fruits. Microorganisms and Fermentation of Traditional Foods Chapter 4, 108-140.

Moon SH, Chang M, Kim HY, Chang HC. 2014. Pichia kudria­vzevii is the major yeast involved in film-formation, off-odor production, and texture-softening in over-ripened Kimchi. Food Sci. Biotechnol. 23, 489-497. https://doi.org/10.1007/s10068-014-0067-7

Pederson CS, Albury MN. 1969. The sauerkraut fermentation, bulletin 824. Geneva, NY: New York State Agricultural Experiment Station.

Peres CM, Peres C, Hernández-Mendoza A, Malcata FX. 2012. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria - With an emphasis on table olives. Trends Food Sci. Technol. 26, 31-42. https://doi.org/10.1016/j.tifs.2012.01.006

Peréz-Díaz IM, Breidt F, Buescher RW, Arroyo-López FN, Jiménez Dıaz R, Garrido-Fernández, A, Bautista-Gallego J, Yoon SS, Johanningsmeire, SD. (2013). Fermented and acidified vegetables. Compendium of methods for the micro­biological examination of foods, 4th edn. American Public Health Association, Washington, DC, 521-532. https://doi.org/10.2105/MBEF.0222.056

Plastourgos S, Vaughn RH. 1957. Species of Propionibacterium associated with zapatera spoilage of olives. Applied Microbiology 5 (4), 267. https://doi.org/10.1128/AEM.5.4.267-271.1957 PMid:13459317 PMCid:PMC1057302

Plengvidhya V, Breidt F, Lu Z, Fleming HP. 2007. DNA Fingerprinting of Lactic Acid Bacteria in Sauerkraut Fermentations. Appl. Environ. Microbiol. 73, 7697-7702. https://doi.org/10.1128/AEM.01342-07 PMid:17921264 PMCid:PMC2168044

Rabie MA, Siliha H, el-Saidy S, el-Badawy AA, Malcata FX. 2011. Reduced biogenic amine contents in sau­erkraut via addition of selected lactic acid bacteria. Food Chem. 129, 1778-1782. https://doi.org/10.1016/j.foodchem.2011.05.106

Randazzo CL, Restuccia C, Romano AD, Caggia C. 2004. Lactobacillus casei, dominant species in naturally fer­mented Sicilian green olives. Int. J. Food Microbiol. 90, 9-14. https://doi.org/10.1016/S0168-1605(03)00159-4

Rejano L, Sánchez AH, de Castro A, Montaño A. 1997. Chemical characteristics and storage stability of pick­led garlic prepared using different processes. J. Food Sci. 62, 1120-1123. https://doi.org/10.1111/j.1365-2621.1997.tb12226.x

Reina LD, Pérez-Díaz IM, Breidt F, Azcarate-Peril MA, Medina E, Butz N. 2015. Characterization of the microbial diver­sity in yacon spontaneous fermentation at 20 °C. Int. J. Food Microbiol. 203, 35-40. https://doi.org/10.1016/j.ijfoodmicro.2015.03.007 PMid:25777679 PMCid:PMC4587664

Rodríguez-Gómez F, Arroyo-López FN, López-López A, Bautista-Gallego J, Garrido-Fernández A. 2010. Lipolytic activity of the yeast species associated with the fermenta­tion/storage phase of ripe olive processing. Food Microbiol. 27, 604-612. https://doi.org/10.1016/j.fm.2010.02.003 PMid:20510778

Rodríguez-Gómez F, Romero-Gil V, García-García P, Garrido-Fernández A, Arroyo-López FN. 2014. Fortification of table olive packing with the potential probiotic bacteria Lactobacillus pentosus TOMC-LAB2. Front. Microbiol. 5. https://doi.org/10.3389/fmicb.2014.00467 PMid:25232354 PMCid:PMC4153319

Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A, García-García P, Arroyo-López FN. 2016. Lactobacillus pentosus is the dominant species in spoilt packaged Aloreña de Málaga table olives. LWT-Food Sci. Technol. 70, 252-260. https://doi.org/10.1016/j.lwt.2016.02.058

Ruiz-Barba JL, Brenes-Balbuena M, Jiménez-Díaz R, García-García P, Garrido-Fernández A. 1993. Inhibition of Lactobacillus plantarum by polyphenols extracted from two different kinds of olive brine. J. Appl. Bacteriol. 74 (1), 15-19. https://doi.org/10.1111/j.1365-2672.1993.tb02990.x

Samish Z, Etinger-Tulczynska R, Bick M. 1963. The Microflora Within the Tissue of Fruits and Vegetables. J. Food Sci. 28, 259-266. https://doi.org/10.1111/j.1365-2621.1963.tb00194.x

Sánchez AH, de Castro A, Rejano L. 1992. Controlled fermenta­tion of caperberries. J. Food Sci. 57, 675-678. https://doi.org/10.1111/j.1365-2621.1992.tb08069.x

Tamminen M, Joutsjoki T, Sjöblom M, Joutsen M, Palva A, Ryhänen EL, Joutsjoki V. 2004. Screening of lactic acid bacteria from fermented vegetables by carbohydrate profil­ing and PCR-ELISA. Lett. Appl. Microbiol. 39, 439-444. https://doi.org/10.1111/j.1472-765X.2004.01607.x PMid:15482435

Tofalo R, Perpetuini G, Schirone M, Ciarrocchi A, Fasoli G, Suzzi G, Corsetti A. 2014. Lactobacillus pentosus domi­nates spontaneous fermentation of Italian table olives. LWT - Food Sci. Technol. 57, 710-717. https://doi.org/10.1016/j.lwt.2014.01.035

Vaughn RH, Stevenson KE, Davé BA, Park HC. 1972. Fermenting yeasts associated with softening and gas-pocket formation in olives. Appl. Microbiol. 23 (2), 316-320. https://doi.org/10.1128/am.23.2.316-320.1972 PMid:5017677 PMCid:PMC380338

Yan P, Chai Z, Chang X, Zhao W, Yue H, Zhang T. 2015. Screening and identification of microorganism degrading nitrite in Chinese sauerkraut. Agro Food Ind. HiTech. 26, 20-23.

Yu J, Gao W, Qing M, Sun Z, Wang W, Liu W, Pan L, Sun T, Wang H, Bai N, Zhang H. 2012. Identification and charac­terization of lactic acid bacteria isolated from traditional pickles in Sichuan, China. J. Gen. Appl. Microbiol. 58 (3), 163-172. https://doi.org/10.2323/jgam.58.163 PMid:22878734

Yue, XQ, Li X, Wu JR, Zhang M. 2013. Isolation and Identification of Lactobacillus from Naturally Fermented Sauerkraut Juices in Xifeng. Adv. Mater. Res Res. 726-731, 147-150. https://doi.org/10.4028/www.scientific.net/AMR.726-731.147

Published

2020-06-30

How to Cite

1.
Bautista-Gallego J, Medina E, Sánchez B, Benítez-Cabello A, Arroyo-López FN. Role of lactic acid bacteria in fermented vegetables. Grasas aceites [Internet]. 2020Jun.30 [cited 2024Apr.20];71(2):e358. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1822

Issue

Section

Research

Most read articles by the same author(s)