Characterization of fatty acids, bioactive lipids, and radical scavenging activity of Canterbury bells seed oil

Authors

  • M. F.R. Hassanien Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University - Scientific Research Deanship Umm Al-Qura University
  • H. El-Shamy Horticulture Department, Faculty of Agriculture, Zagazig University
  • A. A. Abdel Ghany Faculty of Technology and Development, Zagazig University

DOI:

https://doi.org/10.3989/gya.074413

Keywords:

Campanula medium, Canterbury bells, Fatty acids, Lipid-soluble bioactives, Radical scavenging potential, Seed oil

Abstract


The aim of this study was to characterize the chemical composition and radical scavenging activity of Canterbury bells (Campanula medium) seed oil. C. medium seeds contained 9.2% extractable oil. The lipid classes, fatty acids, phytosterol and tocopherol composition of C. medium seed oil were determined. The amount of neutral lipids in the oil was the highest, followed by glycolipids and phospholipids. Linoleic and oleic were the main fatty acids. C. medium oil is characterized by high levels of phytosterols and β-sitosterol was the main compound. β-Tocopherol constituted 42.5% of the total tocopherol content followed by γ-tocopherol. The radical scavenging activity (RSA) toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and galvinoxyl radicals of C. medium oil were higher than those of extra virgin olive oil. The diverse potential uses of C. medium oil may make this plant industrially important.

Downloads

Download data is not yet available.

References

Akcin TA. 2009. Seed coat morphology of some Turkish Campanula (Campanulaceae) species and its systematic implications. Biologia 64, 1089–1094. http://dx.doi.org/10.2478/s11756-009-0177-5

Arens M, Schulte E, Weber K. 1994. Fettsäuremethylester, Umesterung mit Trimethylsulfoniumhydroxid (Schnellverfahren). Fat Sci. Technol. 96, 67–68.

Bockisch M. 1998. Vegetable fats and oils, In M. Bockisch, Fats and Oils Handbook (pp. 174–344). Champaign: AOCS Press.

Brandt K, Ishimaru K. 1998. Campanula (Bellflower) Species: In Vitro Culture, Micropropagation, and the Production of Anthocyanins, Polyacetylenes, and Other Secondary Metabolites. In Medicinal and Aromatic Plants X, ed by Y. P. S. Bajaj, Springer-Verlag Berlin, pp. 45–66.

Gey KF, Puska P, Jordan P, Moser UK. 1991. Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Amer. J. Clin. Nutr. 53, 3245–3265.

Homberg E. 1991. Sterinanalyse als Mittel zum Nachweis von Vermischungen und Verfälschungen. Fat Sci. Technol. 93, 516–517.

Kallio H, Yang B, Peippo P, Tahvonen R, Pan R. 2002. Triacylglycerols, glycerophospholipids, tocopherols and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of Sea buckthorn (Hippophaë rhamnoides). J. Agric. Food Chem. 50, 3004–3009. http://dx.doi.org/10.1021/jf011556o PMid:11982433

Kamal-Eldin A, Appelqvist LA. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31, 671–701. http://dx.doi.org/10.1007/BF02522884 PMid:8827691

Kates M. 1986. Techniques of lipidology: isolation, analysis, and identification of lipids. Ed. by Kates M. Elsevier (USA).

Kjaera KH, Ottosen CO, Jørgensen BN. 2012. Timing growth and development of Campanula by daily light integral and supplemental light level in a cost-efficient light control system. Sci. Hort. 143, 189–196. http://dx.doi.org/10.1016/j.scienta.2012.06.026

Morton JF. 1977. Major Medicinal Plants, Botany, Culture and Uses, Charles C. Thomas Publisher, Springfield, U.S.A.

Okinaka Y, Shimada Y, Nakano-Shimada R, Ohbayashi M, Kiyokawa S, Kikuchi Y. 2003. Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3′,5′-hydroxylase cDNA from Campanula medium. Biosci. Biotechnol. Biochem. 67, 161–165. http://dx.doi.org/10.1271/bbb.67.161 PMid:12619688

Pignatti S. 1982. Flora d'Italia – Edagricole –, Vol. II, pp. 682.

Ramadan MF. 2012. Antioxidant characteristics of phenolipids (quercetin-enriched lecithin) in lipid matrices. Ind. Crops Prod. 36, 363–369. http://dx.doi.org/10.1016/j.indcrop.2011.10.008

Ramadan MF, Amer, MMA, Awad A. 2008. Coriander (Coriandrum sativum L.) seed oil improves plasma lipid profile in rats fed diet containing cholesterol. Eur. Food Res. Technol. 227, 1173–1182. http://dx.doi.org/10.1007/s00217-008-0833-y

Ramadan MF, Kinni SG, Rajanna LN, Seetharam YN, Seshagiri M, Mörsel JT. 2009. Fatty acids, bioactive lipids and radical scavenging activity of Celastrus paniculatus Willd. seed oil. Sci. Hort. 123, 104–109. http://dx.doi.org/10.1016/j.scienta.2009.07.008

Ramadan MF, Kinni SG, Seshagiri M, Mörsel JT. 2010. Fatsoluble bioactives, fatty acid profile and radical scavenging activity of Semecarpus anacardium seed oil. J. Am. Oil Chem. Soc. 87, 885–894. http://dx.doi.org/10.1007/s11746-010-1567-0

Ramadan MF, Sharanabasappa G, Seetharam YN, Seshagiri M, Moersel JT. 2006. Profile and levels of fatty acids and bioactive constituents in mahua butter from fruit-seeds of Buttercup tree [Madhuca longifolia (Koenig)]. Eur. Food Res. Technol. 222, 710–718. http://dx.doi.org/10.1007/s00217-005-0155-2

Rameau JC, Mansion D, Dume G, 1989. Flore Forestiere Francaise, Guide Ecologique illustre, 1, Paris.

Riemersma RA. 2001. The Demise of The n-6 to n-3 Fatty Acid Ratio? A Dossier. Eur. J. Lipid Sci. Technol. 103, 372–373. http://dx.doi.org/10.1002/1438-9312(200106)103:6<372::AID-EJLT372>3.0.CO;2-3

Schwartz H, Ollilainen V, Piironen V, Lampi AM. 2008. Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J. Food Comp. Anal. 21, 152–161. http://dx.doi.org/10.1016/j.jfca.2007.07.012

Sugawara T, Miyazawa T. 1999. Separation and determination of glycolipids from edible plant by high-performance liquid chromatography and evaporative light-scattering detection. Lipids 34, 1231–1237. http://dx.doi.org/10.1007/s11745-999-0476-3 PMid:10606047

Toki K, Saito N, Nishi H, Tatsuzawa F, Shigihara A, Honda T. 2009. 7-Acylated anthocyanins with p-hydroxybenzoic acid in the flowers of Campanula medium. Heterocycles 77, 401–408. http://dx.doi.org/10.3987/COM-08-S(F)32

Touafek O, Kabouche Z, Brouard I, Bermejo JB. 2011. Flavonoides of Campanula alata and their antioxidant activity. Chem. Nat. Comp. 46, 968–970. http://dx.doi.org/10.1007/s10600-011-9799-2

Yang B, Karlsson RM, Oksman PH, Kallio HP. 2001. Phytosterols in sea buckthorn (Hippophaë rhamnoides L.) berries: Identification and effects of different origins and harvesting times. J. Agric. Food Chem. 49, 5620–5629. http://dx.doi.org/10.1021/jf010813m PMid:11714369

Yıldırım H. 2013. Campanula mugeana sp. nov. (Campanulaceae) from western Anatolia, Turkey. Nordic J. Botany. 31, 419–425. http://dx.doi.org/10.1111/j.1756-1051.2012.01566.x

Published

2014-06-30

How to Cite

1.
Hassanien MF, El-Shamy H, Abdel Ghany AA. Characterization of fatty acids, bioactive lipids, and radical scavenging activity of Canterbury bells seed oil. Grasas aceites [Internet]. 2014Jun.30 [cited 2024Mar.28];65(2):e019. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1484

Issue

Section

Research