Effect of Spanish style processing on the phenolic compounds and antioxidant activity of Algerian green table olives

Authors

  • S. Mettouchi Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia
  • R. Sacchi Laboratory of MolecularGastronomy, Faculty di Agraria, UniversitaDegliStudi Di Napoli Federico II
  • Z. E.D. Ould Moussa Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia
  • A. Paduano Laboratory of MolecularGastronomy, Faculty di Agraria, UniversitaDegliStudi Di Napoli Federico II
  • M. Savarese CRIOL, Centro Ricerche per l’Industria Olearia
  • A. Tamendjari Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia

DOI:

https://doi.org/10.3989/gya.0378151

Keywords:

Antioxidant activity, Phenolic compounds, RACI, Spanish style processing, Table olives

Abstract


The study was carried out on seven Algerian olive cultivars to report the effect of Spanish style processing on individual and total phenolic compounds and the changes that occur in antioxidant capacity. The results indicate that the treatment leads to losses in phenolic contents which are cultivar dependent. Sigoise is the least affected variety (12.25%) and Azzeradj from Seddouk the most affected one (94.80%). The phenolic profile shows drastic changes after processing. Hydroxytyrosol is dominant in processed olives (14.42–545.42 mg.100 g-1) while oleuropein is the major phenolic compound in fresh olives (994.27 mg.100 g-1). As a consequence to the loss in phenolic content, substantial reductions in the antioxidant activities of the extracts are noted. They are estimated to be 13.12–92.75% in scavenging activity against the DPPH radical, 37.78–93.98% in reducing capacity, 59.45–97.94% in the hydrogen peroxide radical and 7.26–51.66% in the inhibition bleaching of β-carotene. Among the processed varieties, only Sigoise presented a positive value of RACI (relative antioxidant capacity index).

Downloads

Download data is not yet available.

References

Amiot MJ, Friet A, Macheix J. 1986. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 34, 823–826. http://dx.doi.org/10.1021/jf00071a014

Arslan D. 2012. Physico-chemical characteristics of olive fruits of Turkish varieties from the province of Hatay. Grasas Aceites 63, 158–166. http://dx.doi.org/10.3989/gya.071611

Arslan D, Schreiner M. 2012. Chemical characteristics and antioxidant activity of olive oils from Turkish varieties grown in Hatay province. Sci. Hortic. 144, 141–152. http://dx.doi.org/10.1016/j.scienta.2012.07.006

Arslan D, Özcan MM. 2011. Phenolic profile and antioxidant activity of olive fruits of the Turkish variety "Sarıulak" from different locations. Grasas Aceites 62, 453–461. http://dx.doi.org/10.3989/gya.034311

Ben Othman N, Roblain D, Chammen N, Thonart P, Hamdi, M. 2009. Antioxidant phenolic compounds loss during the fermentation of Ch.toui olives. Food Chem. 116, 662–669. http://dx.doi.org/10.1016/j.foodchem.2009.02.084

Bianchi G. 2003. Lipids and phenols in table olives. Eur. J. Lipid Sci. Technol. 105, 229–242. http://dx.doi.org/10.1002/ejlt.200390046

Blekas G, Vassilakis C, Harizanis C, Tsimidou M, Boskou D-G. 2002. Biophenols in table olives. J. Agric. Food Chem. 50, 3688–3692. http://dx.doi.org/10.1021/jf0115138 PMid:12059143

Borzillo A, Iannotta N, Uccella N. 2000. Oinotria table olives: quality evaluation during ripening and processing by biomolecular components. Eur. Food Res. and Technol. 212, 113–121. http://dx.doi.org/10.1007/s002170000178

Boskou G, Fotini N, Salta Chrysostomou S, Mylona A, Chiou A, Andrikopoulos NK. 2006. Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chem. 94, 558–564. http://dx.doi.org/10.1016/j.foodchem.2004.12.005

Brenes M, Hidalgo JH, Garcia A, Rios JJ, Garcia P, Zamora R. 2000. Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil. J. Am. Oil Chem. Soc. 77, 715–720. http://dx.doi.org/10.1007/s11746-000-0115-4

Brenes M, de Castro A. 1998. Transformation of oleuropein and its hydrolysis products during Spanish-style green olive processing. J. Sci. Food Agric. 77, 353–358. http://dx.doi.org/10.1002/(SICI)1097-0010(199807)77:3<353::AID-JSFA50>3.0.CO;2-G

Cicerale S, Lucas L, Keast R. 2010. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil. Int. J. Mol. Sci. 11, 458–479. http://dx.doi.org/10.3390/ijms11020458 PMid:20386648 PMCid:PMC2852848

Dourtoglou VG, Mamalos A, Makris, DP. 2006. Storage of olives (Oleaeuropaea) under CO2 atmosphere: Effect on anthocyanins, phenolics, sensory attributes and in vitro antioxidant properties. Food Chem. 99, 342–349. http://dx.doi.org/10.1016/j.foodchem.2005.07.051

El Khaloui M, Nouri A. 2007. Proc.d. d'.laboration des olives de table . base des vari.t.s Picholine Marocaine et Dahbia. Transfert Technol. Agric., 152, 1–4.

Han RM, Zhang JP, Skibsted LH. 2012. Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants. Molecules 17, 2140–2160. http://dx.doi.org/10.3390/molecules17022140 PMid:22354191

Hayes JE, Allen P, Brunton N, O'Grady MN, Kerry JP. 2011. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: Olive leaf extract (Oleaeuropaea L.), lutein, sesamol and ellagic acid. Food Chem. 126, 948–955. http://dx.doi.org/10.1016/j.foodchem.2010.11.092

Hemalatha A, Girija K, Parthiban C, Saranya C, Anantharaman P. 2013. Antioxidant properties and total phenolic content of a marine diatom, Naviculaclavata and green microalgae, Chlorella marina and Dunaliella salina. Adv. App. Sci. Res. 4, 151–157.

Ilias F, Kholkhal W, Gaouar N, Bekhechi C, Bekkara FA. 2011. Antioxidant potential of olive (Oleaeuropaea L.) from Algeria. J. Nat. Prod Plant Resour. 1, 29–35.

IOC (International Olive Council). 2013. Market Newsletter, No 76 – Octobre 2013, production d'olives de table, 1–6.

Kia H, Hafidi A. 2014. Chemical composition changes in four green olive cultivars during spontaneous fermentation. LWT-Food Sci. Technol. 57, 663–670.

Malheiro R, Sousa A, Casal S, Bento A, Pereira JA. 2011. Cultivar effect on the phenolic composition and antioxidant potential of stoned table olives. Food Chem. Toxicol. 49, 450–457. http://dx.doi.org/10.1016/j.fct.2010.11.023 PMid:21108983

Marsilio V, d'Andria R, Lanza B, Russi F, Iannucci E, Lavini A. 2006. Effect of irrigation and lactic acid bacteria inoculants on the phenolic fraction, fermentation and sensory characteristics of olive (Oleaeuropaea L. cv. Ascolanatenera) fruits. J. Sci. Food Agric. 86, 1005–1013. http://dx.doi.org/10.1002/jsfa.2449

McDonald S, Prenzler PD, Antolovich M, Robards K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chem. 73, 73–84. http://dx.doi.org/10.1016/S0308-8146(00)00288-0

Nadour M, Michaud P, Moulti-Mati F. 2012. Antioxidant Activities of Polyphenols Extracted from Olive (Oleaeuropaea) of Chemlal Variety. Appl. Biochem. Biotechnol. 167, 1802–1810. http://dx.doi.org/10.1007/s12010-012-9633-8 PMid:22402836

Nsimba RY, Kikuzaki H, Konishi Y. 2008. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. Seeds. Food Chem. 106, 760–766. http://dx.doi.org/10.1016/j.foodchem.2007.06.004

Pasqualone A, Nasti R, Montemurro C, Gomes T. 2014. Effect of natural style processing on the oxidative and the lipid fraction of d hydrolytic degradation of table olives. Food Control. 37, 99–103. http://dx.doi.org/10.1016/j.foodcont.2013.09.038

Pereira J-A, Pereira A-PG, Ferreira ICFR, Valenta P, Andrade PB, Seabra R, Estevinho L, Bento A. 2006. Table Olives from Portugal: Phenolic Compounds, Antioxidant Potential and Antimicrobial Activity. J. Agric. Food Chem. 54, 8425–8431. http://dx.doi.org/10.1021/jf061769j PMid:17061816

Piscopo A, De Bruno A, Zappia A, Poiana M. 2014. Antioxidant activity of dried green olives (Caroleacv.). LWT-Food Sci. Technol. 58, 49–54.

Rodríguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FL, Gómez-Cordovés, C, Manchego JM, Mu-oz R. 2009. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 132, 79–90. http://dx.doi.org/10.1016/j.ijfoodmicro.2009.03.025 PMid:19419788

Romero C, Brenes M, Yousfi K, Garcia P, Garc.a A, Garrido A. 2004. Effect of cultivar and processing method on the contents of polyphenols in table olives. J. Agric. Food Chem. 52 (3), 479–484. http://dx.doi.org/10.1021/jf030525l PMid:14759136

Rovellini P, Cortesi N. 2002. Liquid chromatography-mass spectrometry in the study of oleuropein and ligstroside aglycons in virgin olive oil: aldehydic, dialdehydic forms and their oxidized products. Riv. Ital. Sostanze Gr. 79, 1–14.

Sahan Y, Cansev A, Gulen H. 2013. Effect of Processing Techniques on Antioxidative Enzyme Activities, Antioxidant Capacity, Phenolic Compounds, and Fatty Acids of Table Olives. Food Sci. Biotechnol. 22, 613–620. http://dx.doi.org/10.1007/s10068-013-0122-9

Savarese M, De Marco E, Sacchi R. 2007. Characterization of phenolic extracts from olives (Oleaeuropaea cv Pisciottana) by electrospray ionization mass spectrometry. Food Chem. 105, 761–770. http://dx.doi.org/10.1016/j.foodchem.2007.01.037

Soni MG, Burdock GA, Christian M-S, Bitler C-M, Crea R. 2006. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem. Toxicol. 44, 903–915. http://dx.doi.org/10.1016/j.fct.2006.01.008 PMid:16530907

Sousa A, Ferreira ICFR, Barros L, Bento A, Pereira J-A. 2008. Effect of solvent and extraction temperatures on the antioxidant potential of traditional stoned table olives ''alcaparras''. Lebensm. Wiss. Technol. 41, 739–745. http://dx.doi.org/10.1016/j.lwt.2007.04.003

Sroka Z, Cisowski W. 2003. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 41, 753–758. http://dx.doi.org/10.1016/S0278-6915(02)00329-0

Sun T, Tanumihardjo SA. 2007. An Integrated Approach to Evaluate Food Antioxidant Capacity. J. Food Sci. 72, 159–165. http://dx.doi.org/10.1111/j.1750-3841.2007.00552.x PMid:18034745

Velkov ZA, Kolev MK, Tadjer AV. 2007. Modeling and statistical analysis of DPPH Scavenging activity of phenolics. Collect. Czech. Chem. Commun. 72, 1461–1471. http://dx.doi.org/10.1135/cccc20071461

Vinha AF, Ferreres F, Silva BM, Valent.o P, Gon.alves A, Pereira JA, Oliveira M-B, Seabra R-M, Andrade PB. 2005. Phenolic profiles of Portuguese olive fruits (Oleaeuropaea L.). Influences of cultivar and geographical origin. Food Chem. 89, 561–568. http://dx.doi.org/10.1016/j.foodchem.2004.03.012

Zhan Y, Hong Dong C, Yao Y-J. 2006. Antioxidant activities of aqueous extract from cultivated fruit- bodies of Cordycepsmilitaris (L.) Link in vitro. J. Integr. Plant. Biol. 48, 1365–1370. http://dx.doi.org/10.1111/j.1744-7909.2006.00345.x

Published

2016-03-31

How to Cite

1.
Mettouchi S, Sacchi R, Ould Moussa ZE, Paduano A, Savarese M, Tamendjari A. Effect of Spanish style processing on the phenolic compounds and antioxidant activity of Algerian green table olives. Grasas aceites [Internet]. 2016Mar.31 [cited 2024Apr.18];67(1):e114. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1580

Issue

Section

Research