Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria

Authors

  • Mourad Kacem Univ. Oran Es-Senia
  • Fadhila Kazouz Univ. Oran Es-Senia
  • Chahinez Merabet Univ. Oran Es-Senia
  • Meriem Rezki Univ. Oran Es-Senia
  • Philippe de Lajudie Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus International de Baillarguet, Montpellier
  • Abdelkader Bekki Univ. Oran Es-Senia

DOI:

https://doi.org/10.3989/gya.074808

Keywords:

Algeria, Antagonism, Bacteriocin, Biocontrol, Olives - Pseudomonas savastanoi, Rhizobium

Abstract


In the present investigation, six Rhizobium strains isolated from Algerian soil were checked for their antimicrobial activity against Pseudomonas savastanoi, the agent responsible for olive knot disease. Rhizobium sp. ORN 24 and ORN 83 were found to produce antimicrobial activities against Pseudomonas savastanoi. The antimicrobial activity produced by Rhizobium sp. ORN24 was precipitable with ammonium sulfate, between 1,000 and 10,000 KDa molecular weight, heat resistant but sensitive to proteases and detergents. These characteristics suggest the bacteriocin nature of the antimicrobial substance produced by Rhizobium sp. ORN24, named rhizobiocin 24. In contrast, the antimicrobial activity produced by Rhizobium sp. ORN83 was not precipitable with ammonium sulfate; it was smaller than 1,000 KDa molecular weight, heat labile, and protease and detergent resistant. These characteristics could indicate the relationship between the antimicrobial substance produced by Rhizobium sp. ORN 83 and the “small” bacteriocins described in other rhizobia.

Downloads

Download data is not yet available.

References

Anonymous, 2006. Programme National de Recherche sur les nouvelles technologies: Contribution des recherches biotechnologiques à l’amélioration et à l’accroissement de la production agricole. Haut Commissariat à la Recherche – Algérie.

Bradford, M.B. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein, utilizing the principle of protein-dye binding. Analys. Biochem. 72, 248. doi:10.1016/0003-2697(76)90527-3 PMid:942051

Chen, W.Y. and Echandi E. 1984. Effects of avirulent bacteriocin-producing strains of Pseudomonassolanacearum on the control of bacterial wilt of tobacco. Plant Pathol. 33, 245-53. doi:10.1111/j.1365-3059.1984.tb02646.x

Cook, R.J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Ann Rev. Phytopathol 31, 53-80. doi:10.1146/annurev.py.31.090193.000413 PMid:18643761

Goel, A. K., Sindhu, S. S.and Dadarwal, K. R., 1999. Bacteriocin-producing native rhizobia of green Gram (Vigna radiata) having competitive advantage in nodule occupancy . Microbiol. Res. 154, 43-48.

Gray, K. M., Pearson J. P., Downie J. A., Boboye B. E. A, and Greenburg E. P. 1996. Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J. Bacteriol. 178, 372–376.

Gross, D. C. and Vidaver A. K. 1978. Bacteriocin-like substances produced by Rhizobium japonicum and other slow-growing rhizobia. Appl. Environ. Microbiol. 36, 936-943.

Hafeez, F. Y., Naeem, F. I., Naeem, R., Zaidi, A. H. and Malik, K. A. 2005. Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv. viciae isolated from agriculture soils in Faisalabad. Environ. Exper. Botan. 54, 142–147. doi:10.1016/j.envexpbot.2004.06.008

Hardy, K.G., 1975. Colicin ogeny and related phenomena. Bacteriol. Rev. 39, 464–515.

Hirsch, P. R. 1979. Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J. Gen. Microbiol. 113, 219–228.

Holtsmark, I., Mantzilas D., Eijsink V.G.H. and Brurberg M.B. 2006. Purification, characterization, and gene sequence of Michiganin A, an actagardine-like lantibiotic produced by the tomato pathogen Clavibacter michiganensis subsp. michiganensis. Appl Environ Microbiol, 72, 5814–5821. doi:10.1128/AEM.00639-06 PMid:16957199, PMCid:1563628

Holtsmark, I., Vincent G.H., Eijsink and Brurberg M. B. 2008. Minireview. Bacteriocins from plant pathogenic bacteria FEMS Microbiol. Lett. 280, 1–7. doi:10.1111/j.1574-6968.2007.01010.x PMid:18070073

Hu, F.P. and Young J.M. 1998. Biocidal activity in plant pathogenic Acidovorax, Burkholderia, Herbaspirillum, Ralstonia and Xanthomonas sp., J. Appl. Microbiol. 84, 263–271. doi:10.1046/j.1365-2672.1998.00340.x PMid:9633641

Iacobellis, N. S., Sisto A, Surico G., Evidente A., and Di Maio E. 1994. Pathogenicity of Pseudomonas syringae pv. savastanoi mutants defective in phytohormone production. J. Phytopathol. 140, 238–248. doi:10.1111/j.1439-0434.1994.tb04813.x

Jabrane, A., Sabri A., Compere P., Jacques P., Vandenberghe I., Van Beeumen J., Thonart P. 2002. Characterization of serracin P, a phagetaillikebacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl. Environ. Microbiol. 68, 5704-10.

Jack, R., Tagg, J. R., and Ray, B. 1995. Bacteriocins of Gram-positive bacteria. Microbiol Rev 59, 171-200

Kacem, M. 2007. Plasmid DNA studies in Lactobacillus plantarum strains isolated from olive fermentations: production of and immunity to plantaricin OL15 is associated to a 9.6 Kb plasmid (pOL15) Grasas y Aceites 58, 136-141.

Kacem, M., Zadi-Karam H. and Karam N-E. 2005. Detection and activity of plantaricin OL15, a bacteriocin produced by Lactobacillus plantarum isolated from Algerian fermented olives. Grasas y Aceites 56, 192-197. doi:10.3989/gya.2005.v56.i3.107

Lavermicocca, P., Lonigro S.L., Valerio F., Evidente A. and Visconti A. 2002. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl. Environ. Microbiol. 68, 1403-1407. doi:10.1128/AEM.68.3.1403-1407.2002 PMid:11872493, PMCid:123734

Lerouge P., Roche P., Faucher. C., Maillet F. and Truchet G. 1990. Symbiotic hostspecificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784. doi:10.1038/344781a0 PMid:2330031

Leroy, F. and De Vuyst L. 1999. Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. Appl. Environ. Microbiol. 65, 974-981.

Lugtenberg B. J. J. 1985. Bacteriocin small of fast-growing rhizobia is chloroform soluble and is not required for effective nodulation. J. Bacteriol. 162, 1079–1082.

McManus P.S., Stockwell V.O., Sundin G.W. and Jones A.L. 2002. Antibiotic use in plant agriculture. Ann Rev Phytopathol 40, 443-65. doi:10.1146/annurev.phyto.40.120301.093927 PMid:12147767

Merabet, C. 2007.Diversité et rôle des rhizobia des régions salées et arides d’Algérie. Thèse de doctorat en Microbiologie Appliquée. Université Senia-Oran, pp. 214.

Merabet, C.; Bekki A.; Benrabah N., Bey M., Bouchentouf L., Ameziane H., Rezki M., Domergue A., Cleyet- Marel O., Avarre J.-C., Béna G., Bailly X. and de Lajudie P. 2006. Distribution of Medicago Species and Their Microsymbionts in a Saline Region of Algeria Arid Land Res. Management 20, 219-231.

Montesinos, E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270, 1–11. doi:10.1111/j.1574-6968.2007.00683.x PMid:17371298

Nirmala, J. and. Gaur Y. D. 2000. Detection of bacteriocinogenic strains of Cicer–Rhizobium by modified simultaneous antagonism method Current. Sci. 79, 286-292.

Osnat, G., Nigro L. M. and Riley M.A. 2005. Genetically Engineered Bacteriocins and their Potential as the Next Generation of Antimicrobials. Curr. Pharmaceut. Design. 11, 138-145.

Pedrosa, F.O., Hungria M. Yates M.G. and Newton W.E. 2000. Nitrogen Fixation: From Molecules to Crop Productivity. Dordrecht: Kluwer Acad. 700 pp.

Riley, M.A. and Wertz J.E. 2002. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol 56, 117-37. doi:10.1146/annurev.micro.56.012302.161024 PMid:12142491

Rodelas, B., Gonzalez-Lopez J., Salmeron V., Martinez- Toledo M.V. and Pozo C. 1998. Symbiotic effectiveness and bacteriocin production by Rhizobium leguminosarum bv viceae isolated from agricultural soils in Spain. Appl. Soil Ecol. 8, 51–60. doi:10.1016/S0929-1393(97)00066-8

Roslycky, E. B. 1967. Bacteriocin production in the rhizobia bacteria. Can. J. Microbiol. 13,431-432.

Sakthivel, N, Mew TW. 1991. Efficacy of bacteriocinogenic strains of Xanthomonas-oryzae pv oryzae on the incidence of bacterial-blight disease of rice (Oryza-sativa l). Can. J. Microbiol. 37, 764-8.

Schillinger, U. and F.K. Lücke 1989. Antibacterial activity of L. sake isolated from meat. Appl. Environ. Microbiol. 55, 1901-1906.

Schripsema, J., de Rudder K. E. E., van Vliet, T. B Lankhorst P. P., de Vroom, Kijne E.J. W., and. Van Brussel A. A. N. 1996. Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-Lhomoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol. 178, 366–371.

Schwinghamer, E.A.and Brockwell J. 1978; Properties of some bacteriocins produced by Rhimbium trifolii J. Gen. Micro Biol. 9, 403-41 3.

Spaink, H.P., Kondorosi A. and Hooykaas P.J.J. 1998. The Rhizobiaceae: Molecular Biology of Model Plant- Associated Bacteria. Dordrecht: Kluwer Acad. 566 pp.

Sridevi, M. and Mallaiah, K. V. 2008. Production of Bacteriocins by Root Nodule Bacteria. Int. J. Agricul. Res. 3, 161-165. doi:10.3923/ijar.2008.161.165

Surico, G. 1986. Indoleacetic acid and cytokinins in the olive knot disease. An overwiew of their role and their genetic determinants, In J. Bailey (ed.), Biology and molecular biology of plant-pathogen interactions.NATO ASI series, vol. H1. Springer-Verlag, Berlin, Germany. p. 315–329.

Tagg, J. R., Dajani, A.S. and Wannamaker, L. W. 1976. Bacteriocins of gram positive bacteria. Bacterial. 40, 722-756.

Toba, T., Samant S.K., Yoshioka E. and Itoh T. 1991. Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA 6 Lett. Appl. Microbiol. 13, 281-286. doi:10.1111/j.1472-765X.1991.tb00629.x

Toth, I.K., Mulholland V., Cooper V., Bentley S., Shih Y.L.and Perombelon and Salmond G. P. C. 1997. Generalized transduction in the potato blackleg M. C. M. Pathogen Erwinia carotovora subsp. atroseptica by bacteriophage ÊM. Microbiol. 143, 2433–2438.

Van Brussel, A. A. N., Planquk K., and Quispei A. 1977. The wall of Rhizobium leguminosarurnt in bacteroids and free-living forms. J. Gen. Microbiol. 101,51-56.

Van Brussel, A. A. N., Zaat S. A. J, Wijffelman C. A., Pees E., and Van Sluys, M.A., Monteiro-Vitorello C.B., Camargo L.E., Menck C.F., Da Silva A.C., Ferro J.A., Oliveira M.C., Setubal J.C., Kitajima J.P. and Simpson A.J. 2002. Comparative genomic analysis of plantassociated bacteria. Annu. Rev. Phytopathol. 40, 169–189. doi:10.1146/annurev.phyto.40.030402.090559 PMid:12147758

Vargas, A.A.T. and Graham, P.H. 1989. Cultivar and pH effects on competition for nodule sites between isolates of Rhizobium in beans. Plant and Soil 117, 195-200. doi:10.1007/BF02220712

Whitehead, N.A., Byers J.T., Commander P., 2002. The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Dekker, Inc., New York, N.Y. p. 309–335.

Wijffelman, C. A., Pees E.,Van-Brussel A. A. N. and Hooykaas P. J. J. 1983. Repression of small bacteriocin excretion in rhizobium leguminozarum and Rhizobium trifolii by transmissible plasmids. Mol. Genet. 192, 171-176 doi:10.1007/BF00327663

Wilson, M., and P. A. Backman. 1999. Biological control of plant pathogens. In J. R. Ruberson (ed.), Handbook of pest management. Marcel 2384–2389.

Wisniewski-Dyé F.and Downie J. A. 2002. Quorumsensing in Rhizobium Antonie van Leeuwenhoek 81, 397–407. doi:10.1023/A:1020501104051 PMid:12448738

Yap, M.N., Barak J. D. and Charkowski A.O. 2004. Genomic diversity of Erwinia genus and its correlation with virulence. Appl. Environ. Microbiol. 70, 3013-3023 doi:10.1128/AEM.70.5.3013-3023.2004 PMid:15128563, PMCid:404413

Young J.M., 2004. Olive knot disease and its pathogens. Australasian Plant Pathol. 33, 34–39. doi:10.1071/AP03074

Downloads

Published

2009-06-30

How to Cite

1.
Kacem M, Kazouz F, Merabet C, Rezki M, de Lajudie P, Bekki A. Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria. Grasas aceites [Internet]. 2009Jun.30 [cited 2024Apr.23];60(2):139-46. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/558

Issue

Section

Research

Most read articles by the same author(s)