

Cold pressed poppy seed oils: sensory properties, aromatic profiles and consumer preferences

D.D. Emir^a, O. Güneşer^a and E. Yılmaz^{a,,\infty}

^aÇanakkale Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, Terzioğlu Campus, 17020, Çanakkale/Turkey Corresponding author: eyilmaz@comu.edu.tr

Submitted: 16 October 2013; Accepted: 27 January 2014

SUMMARY: The sensory descriptions, aromatic profiles and consumer preferences of poppy seed oils produced from three poppy varieties (ofis3, ofis4, and ofis8) by cold pressing were studied. Roasting and enzyme treatments were applied to the seeds prior to cold pressing. In addition, 75 different volatiles were quantified by GC-MS analysis. A flavor profile analysis was made with 9 panelists and 12 terms were identified for the description of the oil. The results shown that, only earthy term scores were different among the seed varieties, while treatments have caused differences in roasted, hazelnut, hay and sweet aromatic terms. Roasting and enzyme treatments decreased hay and increased sweet aromatic values. The enzyme treatment of the poppy seeds enhanced fermented and waxy scores in the cold press oils. 1-hexanol, 2-heptanone, 2-pentyl furan, 3-ethyl-2-methyl 1,3-hexadiene, 2-(dimethylamino)-3-phenylbenzo[b]thiophene, 3-octen-2-one, 4-hydroxyphenylacetic acid, alpha-pinene, limonene, dimethyl sulfone, mercaptoacetic acid, hexanal and nonanal were quantified as the major volatiles in all treatment groups. Consumer test results indicated that roasted samples are more liked, and the yellow (ofis4) roasted sample was identified as the most preferred (53.55%) oil by consumers. This study provides the first sensory descriptive definitions and consumer preferences for poppy seed oils.

KEYWORDS: Cold Press; Consumer Acceptance; Flavor Profile Analysis; Poppy seed Oil; Roasting; Volatiles

RESUMEN: Aceites de semillas de amapola prensados en frio: Propiedades sensoriales, perfiles aromáticos y preferencias del consumidor. En este trabajo, se analizan las descripciones sensoriales, perfiles aromáticos y preferencias de los consumidores de aceites de semillas de amapola producidosmediante prensado en frío a partir de tres variedades (ofis3, ofis4, y ofis8).Previo al prensado en frío, a las semillas se aplicóuna fase de tostado y un tratamiento enzimático. Además del análisis GC-MS donde se cuantificaron 75 compuestos volátiles, el perfil del sabor, realizado con 9 panelistas, logra identificar 12 términos descriptores. Los resultados muestran que, solamente la puntuación del término "terroso" fue diferente entre las variedades de semillas, también los tratamientos provocan diferencias en los términos, tostado, avellana, heno y aromas dulces. El tostado y los tratamientos enzimáticos disminuyeron la puntuación de heno y aumentó los valores de aromático dulce. El tratamiento enzimático de las semillas de amapola mejora los valores de fermentado y cera en los aceites prensados en frío. Los principales compuestos volátiles cuantificados en todos los grupos y tratamientos fueron: 1-hexanol, 2-heptanona, 2-pentanona, furano 2-pentilo, 3-etil-2-metil 1,3- hexadieno, 2-(dimetilamino)-3-fenilbenzo[b]tiofeno, 3-octen-2-one, ácido 4- hidroxifenilacético, alfa-pineno, limoneno, dimetilsulfona, ácido mercaptoacético, hexanal y nonanal. Los resultados de las pruebas de consumo indican que las muestras tostadas son las que más gusta, y el amarillo de la muestra tostada ofis4 fue identificado como el del aceite preferido por los consumidores (53,55 %). Este estudio proporciona las primeras definiciones descriptivas sensoriales y preferencias de los consumidores para los aceites de semillas de amapola.

PALABRAS CLAVE: Aceite de semillas de amapola; Aceptación del consumidor; Análisis del flavor; Presión en frío; Tostado; Volátiles

Citation/Cómo citar este artículo: Emir DD, Güneşer O, Yılmaz E. 2014. Cold Pressed Poppy seed Oils: Sensory Properties, Aromatic Profiles and Consumer Preferences. *Grasas Aceites* **65** (3): e029. doi: http://dx.doi.org/10.3989/ gya.109213.

Copyright: © 2014 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 Licence.

1. INTRODUCTION

Poppy seed oil is recognized as a nutritious and delicious edible oil for direct human consumption while other uses have been indicated in medicinal applications and for oleochemical productions as paints, varnishes, and coatings (Bozan and Temelli, 2003; Özcan and Atalay, 2006). In the literature, solvent, supercritical fluid or press extracted poppy seed oils were studied for their general physical and chemical properties and fatty acid, sterol and tocopherol compositions (Bozan and Temelli, 2003; Erinç et al., 2009; Krist et al., 2005; Özcan and Atalay, 2006). Cold pressing has emerged as a simple, cheap and easy edible oil production technique without the requirement of refining. Its main drawback is its limited oil yield which can be overcome by subsequent solvent extraction of the oily meal after cold pressing and in order to enhance press oil yield some pre-treatments (dehulling, crushing, limited heating, steaming, wetting, enzyme applications etc.) can also be applied to the seeds. Hence, it would be expected that these treatments may cause some changes in the aromatic profile, sensory properties, and consumer perceptions of the oils. Cold press oils are chemical free, self-stable products and have their own natural flavor. In addition, they retain most of their bioactive components, enjoy a great consumer awareness and consumption of this oils is growing (Martinez et al., 2008; Sing and Bargale, 2000). It is of extreme importance for an edible oil to have acceptable sensory properties for consumer preference because the market success of oil is mostly determined by consumer sensory perception together with quality and price. The literature for virgin olive oil is filled with studies about sensory properties and aromatic compositions, as well as the effects of different agricultural, processing and storage factors (Aparicio et al., 1997; Boskou, 1996; Öğütçü et al., 2008).

Sensory analyses can be combined with aromatic analysis and/or consumer tests to modify the properties of products for the optimal consumer satisfaction. Among others, quantitative descriptive analysis and flavor profiling are the most widely used tests for the sensory characterization of oils together with consumer tests to assess consumer needs (Öğütçü and Yılmaz, 2009; Brühl and Matthäus, 2008).

In a study by Wei *et al.* (2012), cold pressed rapeseed oil samples were analyzed for volatile compounds to observe the effects of seed variety and

different processing operations. It was found that thermal treatment and microwave radiation have significantly changed the aromatic profile of the samples. Unfortunately, there were limited studies on the sensory and aromatic properties of other cold press oils, except for virgin olive oil. An early study on the chemical composition of the volatile oil of poppy seeds was published in China by Li et al., (1990). They detected hexanal, 2-heptanone, heptenal, 3-octen-2-one and 2-pentylfuran. The same volatile compounds were observed by Krist et al. (2005) for gray, white and blue poppy seed oils. The researchers analyzed the volatile constituents of the poppy seed oils by solid-phase microextraction technique. Gray, white and blue poppy seed oils were extracted at room temperature (20 °C) while blue poppy seed oil was extracted from seeds that had been heated at 60 °C for 30 min by pressing afterwards at room temperature. One gray poppy seed sample was acquired from Hungary, and it was indicated that the sample had been stored since 1868. There was neither laboratory scale cold press machine utilization nor other pre-treatments in that study. The same research group published another article about the detection of poppy seed oil adulteration with sunflower oil based on volatile and triacylglycerol composition (Krist et al., 2006). In the literature, there was no other published study about the volatile composition of different poppy seed varieties and the effects of different production techniques on the oil aromatics with sensory properties; furthermore, consumer preferences concerning poppy seed oils were not determined.

The objectives of the present study were to assess the effects of roasting and enzyme treatment on the volatile compositions and sensory properties of cold pressed oils of three different poppy seed varieties and to reveal consumer preferences of the poppy seed oils with the best sensory quality.

2. MATERIALS AND METHODS

2.1. Materials

In this study three different poppy seed varieties registered by the Turkish Grain Board (TMO) were used. Poppy seeds of Ofis 8 (white) produced in Ulubey / Uşak, Ofis 4 (yellow) produced in Şuhut / Afyon and Ofis 3 (blue) produced in Ulubey / Uşak were collected from local growers. All varieties

were cultivated in the 2011 harvest season and were dried and cleaned for foreign materials. The poppy seeds were stored in cotton, cloth bags (25 kg) in cool and dry storage conditions during the study. Ferzim Hemicellulase (60.000 U/g activity at 55–65 °C and 4.0–6.5 pH value) and Alphamalt BK Quick Protease (12 U/g activity at 40-65 °C and 4.5–6.0 pH value) were bought from local chemical suppliers. Commercial poppy seed oils from markets and stored poppy seed oil samples from local seed mills in the city of Afyon were collected as reference materials for the sensory panel. The internal standard solution for aromatic compound analysis was composed of 82 µg of 2-methyl-2-heptanone and 5520 µg 2-methyl valeric acid dissolved 1 mL methanol. All chemicals and standards were of analytical grade and purchased either from Merck (Darmstadt, Germany) or Sigma-Aldrich (St. Louis, USA).

2.2. Preparation of the Poppy seeds and Cold Pressing

Each poppy seed variety was divided into two control, two roasting and two enzyme treatment groups so that there were two equal portions for each treatment group in every variety and cold pressing was applied in duplicate. Before cold pressing, the pre-treatments were completed for every portion in each treatment group and variety. The appropriate moisture content for optimum oil yield was determined as 12% for poppy seeds in the pre-experiments with the lab scale cold press machine (Koçmaksan ESM 3710, İzmir, Turkey). The moisture contents were constantly measured and set at 12% by water conditioning before pressing. Water conditioning was achieved through equilibrium in hermetic plastic bottles by spraying the calculated amount of water on the seeds and storing at room temperature for 24 h. The amount of the added water was calculated by:

$$W=[(A/B)\times C]-C$$
(Eq. 1)

Where, W indicates amount of the added water (g), A indicates the dry matter content of the seeds (%), B indicates the goal dry matter content (%) of seeds, and C indicates the amount of the seeds (g).

Roasting of the poppy seeds was carried out in a Luxell L \times 3530 type oven (Kumtel, Turkey) (1450 W) at 150 °C for 30 min. The seeds were put in metal plates of 2 cm in height. After reaching 150 °C, they were mixed up in 10 min intervals for constant heat transfer. At the end of 30 min, the seeds were left to cool to room temperature and moisture levels were measured. Then the moisture content was measured and corrected by water conditioning. Enzyme treatments of the poppy seeds were performed by incubating them in the enzyme solution at a 1:1 w/w (seed:enzyme) level. For this purpose, 60 U/g seed hemicellulase were dissolved in 500 mL of 0.1 M Na₂PO₄+0.1 M citric acid buffer solution (pH 6.0). Due to the too small seed size of poppy, the enzyme solution was mixed with the seeds without crushing, and incubated at 60 °C for 3 hours in a dry oven (Ecocell drying oven, MMM Med Center, Germany). Then 0.012 U/g seed protease were dissolved in 100 mL of the same buffer, added to the seed slurry, and incubated for an additional hour. After incubation, enzyme inactivation was accomplished by heating the seeds up to 100 °C and waiting for 2 hours at the same temperature to ensure seed drying as well. During the heat treatment, water vaporized although roasting had not occurred. Meanwhile, seed moisture levels were monitored and when they decreased down to 12%, the batches were cooled to room temperature.

Cold pressing was carried out with a laboratory scale (12 kg seed h^{-1} capacity) cold press machine (Koçmaksan ESM 3710, İzmir, Turkey) which is a single head expeller type (kms10) with a 1.5 kw powered engine and 0.6 kw heating resistance. The 10 mm exit die, 20 rpm screw rotation speed and 40 °C exit temperature were selected as constant parameters. When oil and meal were collected and weighed, the oil filtered immediately through a 40 µm screen to separate suspended materials. Then it was put into amber colored, capped glass bottles, flushed with nitrogen, kept in a dark and cool place for 15 days for natural precipitation where plant remaining and phase separation of water took place. After decantation, the separated clear oil phases were collected and stored in the fridge during the analyses.

2.3. Flavor Profile Analysis of the Poppy seed Oils

A sensory description of the poppy seed oils was made by Flavor Profile Analysis (FPA) (Meilgard et al., 1991) with a flavor panel evaluation using the vegetable oils method of Cg 2-83 (AOCS, 1984) and other literature (Brühl and Matthäus, 2008; Öğütçü et al., 2008; Lyon and Watson, 1994) which was used for the FPA method development of the samples. Nine panelists (5 female, 4 male, aged 28-42) took part voluntarily in the flavor profile analysis and panelist training was completed for 15 hours with 3 separate sessions on different days. During these sessions, under the moderation of a panel leader, the panelists developed the sensory descriptive terms by using different fresh and stored poppy seed oil samples collected from marketplaces. The standards used to calibrate the panelists and the developed descriptive terms by the panel are shown in Table 1. FPA was carried out using a 5-point scale (0-none to 4-maximum intensity) ballot anchored with each point on it. Within each panel, 3 oil samples were coded with 3-digit numbers, put into a colorless round bottom glass with a narrower head and closed

Descriptive Term	Reference Standard
Poppy seed-like	Poppy paste
Roasted	Roasted bread
Hazelnut-like	Hazelnut
Hay	Dry hay
Astringent	Alum solution (% 0.1)
Waxy	Melted paraffin
Fermented	Wet yeast
Spicy	Pepper, clove, peppermint mixture
Earthy	Humid soil
Bitter	Caffeine solution (% 0.05)
Sweet aromatic	Flower Honey
Throatcatching	Harsh taste after 30 seconds when swallowed

TABLE 1.Descriptive Terms with References Used for the
Flavor Profile Analysis of the Poppy seed Oils

with a metal lid. The poppy seed oil samples were served to the panelists at room temperature under daylight, along with water, a slice of apple and an expectoration cup for the participants to clean their palate between samples. Duplicate samples were served in different sessions in a randomized order for each of the two production samples.

2.4. Identification and Quantification of Volatile Compounds

The volatile compounds in the poppy seed oils were analyzed according to the technique of Krist et al., (2005) with minor modifications. Extractions of the volatile compounds were achieved by the solid phase micro-extraction (SPME) technique (Pawliszyn, 2012). For this purpose, 5 mL of oil sample were weighed into a 40 mL amber SPME vial (Supelco, Bellfonte, USA) and 1 g of NaCl and 10 µL internal standard (0.1 µL of 2-methyl-3-heptanone and 6 µL of 2 methyl valeric acid dissolved in 1 mL methanol) were added. The closed vial was vortexed for 1 min. Then, the vial was placed in a water bath (GFL, Germany) constant at 40 °C for 20 min to equibrate the volatiles in the headspace. Then, an SPME (2 cm to 50 / 30 µm DVB / Carboxen / PDMS, Supelco, Bellafonte) needle was inserted into the vial. The SPME fiber was exposed at a depth of 2 cm in the headspace of the vial for 20 min at 40 °C in a waterbath. Then, the fiber-collected volatiles were injected into a GC/MS (Agilent 6890N/Agilent 5875C mass spectrometer, Agilent technologies, Wilmington, DE, USA), immediately. A nonpolar HP5 MS column (30-m×0.25-mm i.d. ×0.25-µm film thickness, J&W Scientific, Folsom, CA) was used for separation of the volatile compounds. The GC oven temperature was programmed 38 °C for 1 min., and 40 to 220 °C at 5 °C·min⁻¹. The final oven temperature was held

for 20 min. Helium was used as a carrier gas at 1.2 mL·min⁻¹. The MSD conditions were as follows: capillary direct interface temperature, 280 °C; ionization energy, 70 eV; mass range, 35 to 350 amu; scan rate, 4.45 scans/s. Identification of the volatiles was based on the comparison of the mass spectra of unknown compounds with those in the National Institute of Standards and Technology (NIST, 2008) and Wiley Registry of Mass Spectral Data, 7th Edition databases (WILEY, 2005). Quantification of the volatile compounds was positively calculated from the relative abundance of volatile compounds using the Equation given below (Avsar *et al.*, 2004). Methyl pentanoic acid and 2-methyl-3-heptanone were used as an internal standard (IS) for acidic and neutral-basic character compounds, respectively.

Mean relative abundance $(ng \cdot kg^{-1}) =$ concentration of IS × peak area of compound / peak area of the IS. (Eq. 2).

2.5. Consumer Acceptance Test of the Poppy seed Oils

Sensory attributes (appearance, color, odor and taste) of the poppy seed oils were assessed by a 5-point hedonic scale (1 for "dislike extremely" ' to 5 for "like extremely"). Triple sets (control, roasted and enzyme treated) of each poppy seed variety (ofis8, ofis3 and ofis4) were prepared separately and each group was tested twice by 50 volunteer consumers (faculty, staff and students in the university) on different days. The mean scores of the collected hedonic scales were calculated and one sample from each variety was selected based on the highest hedonic scores of the consumers. Then 3 selected poppy seed oil samples (ofis3-roasted, ofis4-roasted and ofis8-enzyme) were coded with a 3-digit number, served to 150 different consumers in a glass and only one question was asked: 'Please examine the coded oil samples visually, then smell each one and finally take one spoon, spread the oil in your mouth and swallow it. Circle the code number of the one which you would like most'. The collected data were used to calculate the percentage of consumer preference for each sample.

2.6. Statistical Analysis

Sensory analysis and consumer acceptance test data were applied to the non-parametric Kruskal-Wallis test. Dunn's test was used for mean separation. Nonmetric Multidimensional Scale (MDS) analysis was used to observe the complex relationships among the 12 sensory descriptive terms measured by the panel and 75 volatile compounds determined with GC-MS analysis (Sheskin, 2004). Statistical analyses were completed by using Minitab ver. 16.1.1 (MINITAB, 2010) and SPSS package programs (SPSS, 1994). For all statistical analyses, the level of confidence was at least 95% in this study.

3. RESULTS AND DISCUSSION

In this study, poppy seed oils extracted from three seed varieties (ofis3, ofis4 and ofis8) by the cold press technique with previous pre-treatments (roasted or enzyme treated against a control) were characterized by 12 different descriptive terms (Table 1) by panelists in FPA.

Sensory terms and their measured mean values for the poppy seed oils are shown in Table 2. It was observed that there were no statistically significant differences among the seed varieties in terms of poppy seeds (P=0.347), roasted (P=0.707), hazelnut (P=0.735), hay (P=0.606), astringent (P=0.685), waxy (P=0.277), fermented (P=0.236), spicy (P=0.868), bitter (P=0.115), sweet aromatic (P=0.343) and

throat catching (P=0.342) terms. However, earthy flavor (P=0.038) was different among the varieties. The Ofis8 (white) poppy seed variety had a more earthy flavor than the other varieties. These results have indicated that genetic differences among the seeds are not a determining factor for the sensory definitions of the produced oils. Hence, the oils extracted from the ofis3, ofis4 and ofis8 varieties can substitute for each other as consumer sale products. Also, it is clear from the results that the most important sensory descriptive terms for poppy seed oils are poppy seed, roasted, hazelnut, earthy and waxy as evidenced from the relatively higher scores (Table 2) that are recorded. In most samples, bitter, astringent and fermented scores are low, and this determination is very important for the consumer acceptance of edible

TABLE 2.	Panel Measured Sensor	v Descriptive Properties of	f the Poppy seed Oil Sam	ples (0: none to 4:maximum)*

			Poppy seed	l Variety	
Sensory property	Treatment	Ofis 8 (white)	Ofis 3 (blue)	Ofis 4 (yellow)	Total (P=0.726)
	Control	2.65±0.15	2.65±0.35	2.70±0.00	2.66±0.09
Damma and	Roasted	2.95 ± 0.25	2.65±0.15	2.80 ± 0.20	2.80±0.10
Poppy seed	Enzyme	2.90 ± 0.10	2.65 ± 0.05	2.55 ± 0.05	2.70 ± 0.07
	Total (P=0.347)	2.83 ± 0.09	2.65 ± 0.09	2.68 ± 0.07	
					Total (P=0.012)
	Control	1.90 ± 0.20	1.95 ± 0.15	2.05 ± 0.05	1.96 ± 0.07^{A}
Roasted	Roasted	2.70 ± 0.10	2.20 ± 0.20	2.60 ± 0.20	2.50 ± 0.12^{B}
	Enzyme	2.85 ± 0.35	2.85±0.35	2.35 ± 0.25	2.68 ± 0.17^{B}
	Total (P=0.707)	2.48 ±0.21	2.33 ± 0.20	2.33 ±0.13	
					Total (P=0.032)
	Control	2.30 ± 0.00	2.25±0.15	2.25±0.15	2.26 ± 0.05^{B}
Hazelnut	Roasted	2.55±0.15	2.40 ± 0.00	2.75 ± 0.05	2.56 ± 0.07^{A}
	Enzyme	2.20 ± 0.20	2.40 ± 0.00	2.35 ± 0.05	2.31 ± 0.06^{B}
	Total (P=0.735)	2.35 ± 0.09	2.35 ± 0.05	2.45 ± 0.10	
					Total (P=0.045)
	Control	1.40 ± 0.10	1.60 ± 0.10	1.50 ± 0.10	1.50 ± 0.05^{A}
Hay	Roasted	1.40 ± 0.00	0.75 ± 0.05	1.20 ± 0.20	1.12 ± 0.13^{B}
	Enzyme	1.35 ± 0.05	1.25 ± 0.05	1.40 ± 0.00	1.33 ± 0.03^{AB}
	Total (P=0.606)	1.38 ± 0.03	1.20 ± 0.15	1.36 ± 0.08	
					Total (P=0.121)
	Control	1.05 ± 0.05	1.00 ± 0.20	1.35 ± 0.35	1.13±0.13
Astringent	Roasted	0.90 ± 0.20	1.05 ± 0.05	0.90 ± 0.10	0.95 ± 0.06
Astringent	Enzyme	1.40 ± 0.10	1.50 ± 0.00	0.95 ± 0.25	1.28±0.12
	Total (P=0.685)	1.11±0.11	1.18 ± 0.11	1.06 ± 0.14	
					Total (P=0.192)
	Control	1.50 ± 0.10	1.35 ± 0.15	1.35 ± 0.05	1.40 ± 0.05
Waxy	Roasted	1.45 ± 0.25	1.15±0.15	1.30 ± 0.20	1.30 ± 0.10
	Enzyme	1.65 ± 0.15	1.85 ± 0.25	1.30 ± 0.00	1.60 ± 0.12
	Total (P=0.277)	1.53 ± 0.08	1.45 ± 0.18	1.31 ± 0.05	

6 • D.D. Emir, O. Güneşer and E. Yılmaz

			Poppy seed	l Variety	
Sensory property	Treatment	Ofis 8 (white)	Ofis 3 (blue)	Ofis 4 (yellow)	Total (P=0.726)
					Total (P=0.209)
	Control	1.35±0.15	0.95 ± 0.25	1.25±0.25	1.18±0.12
Fermented	Roasted	1.05 ± 0.25	1.20 ± 0.10	0.95±0.15	1.06±0.09
	Enzyme	1.60 ± 0.10	1.75 ± 0.05	1.00 ± 0.00	1.45±0.14
	Total (P=0.236)	1.33 ± 0.12	1.30 ± 0.16	1.06±0.09	
					Total (P=0.374)
	Control	0.85±0.15	0.95 ± 0.25	1.10 ± 0.00	0.96 ± 0.08
Spicy	Roasted	1.15 ± 0.05	0.85 ± 0.15	1.00 ± 0.20	1.00 ± 0.08
	Enzyme	1.30 ± 0.20	1.20 ± 0.00	1.00 ± 0.00	1.16±0.07
	Total (P=0.868)	1.10 ± 0.10	1.00 ± 0.10	1.03 ± 0.05	
					Total (P=0.132)
	Control	2.00 ± 0.40	1.25 ± 0.15	1.35 ± 0.05	1.53±0.18
Earthy	Roasted	1.45 ± 0.05	0.70 ± 0.10	1.00 ± 0.20	1.05 ± 0.15
	Enzyme	1.25 ± 0.25	1.15 ± 0.05	0.90 ± 0.30	1.10±0.12
	Total (P=0.038)	1.56 ± 0.18^{a}	1.03 ± 0.11^{b}	1.08 ± 0.12^{b}	
					Total (P=0.088)
	Control	1.35 ± 0.05	0.90 ± 0.10	1.40 ± 0.20	1.21±0.11
Bitter	Roasted	1.10 ± 0.00	0.35 ± 0.15	0.80 ± 0.20	0.75 ± 0.15
	Enzyme	1.45 ± 0.05	1.30 ± 0.20	0.80 ± 0.20	1.18±0.14
	Total (P=0.155)	1.30 ± 0.06	0.85 ± 0.18	1.00 ± 0.15	
					Total (P=0.033)
	Control	0.80 ± 0.00	0.65 ± 0.05	0.90 ± 0.10	0.78 ± 0.05^{B}
Sweet aromatic	Roasted	1.20 ± 0.00	1.20 ± 0.20	1.15±0.05	1.18 ± 0.05^{A}
	Enzyme	0.70 ± 0.10	1.20 ± 0.00	1.40 ± 0.10	1.10 ± 0.13^{A}
	Total (P=0.343)	0.90 ± 0.10	1.01 ± 0.12	1.15±0.09	
					Total (P=0.133)
	Control	1.65 ± 0.35	1.45 ± 0.15	1.70 ± 0.70	1.60 ± 0.21
Throat catching	Roasted	1.15 ± 0.05	0.90 ± 0.20	1.20 ± 0.00	1.08 ± 0.07
	Enzyme	1.90 ± 0.30	1.30 ± 0.20	0.90 ± 0.30	1.36±0.22
	Total (P=0.342)	1.56 ± 0.18	1.21±0.13	1.26±0.24	

TABLE 2(Continued)

^{*}The values are given as mean±standard error. There were 9 samples per treatment and variety with 2 replicates for each sample. ^{A-B}Means followed by different superscript letters represent significant differences in the treatments for sensory property. ^{a-b}Means followed by different superscript letters represent significant differences in the poppy seed variety for sensory property.

oils. In a similar manner, when the effects of treatments (control, roasted and enzyme) on the sensory properties of poppy seed oils were taken into consideration, no significant differences were determined between the treatments for poppy seed (P=0.726), astringent (P=0.121), waxy (P=0.192), fermented (P=0.209), spicy (P=0.374), earthy (P=0.132), bitter (P=0.088) and throat catching (P=0.133) terms. On the other hand, there were significant differences between the treatments for roasted (P=0.012), hazelnut (P=0.032), hay (P=0.045) and sweet aromatic terms (P=0.033). These results were rather

expected, since roasting may have caused Maillard reactions so that aromatics associated with roasted flavor were formed (Krist *et al.*, 2005). While sensory hay scores were reduced by roasting and enzyme treatments, sweet aromatic values were enhanced by both treatments. In general, it can be said that seed roasting has improved the positive sensory properties for the poppy seed oils, while enzyme treatment has caused some minor increases in the waxy and fermented flavors, which are perceived as negative attributes in edible oils (Öğütçü *et al.*, 2008; Brühl and Matthäus, 2008).

The volatile compound compositions of the oil samples were analyzed by SPME-GC/MS measurements. Seventy-five different volatiles were determined in the samples and are shown in Table 3. The volatiles determined in most of the samples were 1-hexenol, 1-octen-3-ol, 1-pentenol, γ-butyrolactone, γ-nonalactone, γ-octalactone, 2-heptanone, 2-nonanone, 2-pentanone, 3-ethyl-2-methyl-1,3-hexadiene, α -pinene, limonene, mercaptoacetic acid, naphthalene, decanal, heptanal, hexanal and caprylic acid. When Table 3 is viewed critically, it can be observed that the volatiles of 1-hexanol, 2-heptanone, 2-pentanone, 2-pentylfuran, 3-ethyl-2-methyl, 1,3-hexadiene, 2-(dimethylamino)-3-phenylbenzo[b] thiophene, 3-octen-2-one, 4-hydroxyphenylacetic acid, α -pinene, limonene, dimethyl sulfone, hexanal and nonanal were determined in all treatment groups. In general, poppy seed oils are characterized by aromatics described with fatty, creamy, nutty, roasted, sweet, fruity, waxy, woody, citrus and similar definitions. Hence, it could be said that these oils are very aromatic and rich flavored specialty oils. On the other hand, 4-ethyl benzealdehyde, 2-methyl-5-pyrazine, 2,3-dimethyl-5-ethylpyrazine, 2,4-nonadienal, 2-ethyl-3,5-dimethyl pyrazine and dimethyl sulfoxide were found only in the roasted samples, but not in the control or the enzyme treated samples. The aroma/flavor descriptions of these volatiles indicate roasted, cooked, caramel, biting, nutty and similar definitions and are in good agreement with the processes applied to the samples.

These volatiles are usually formed by heat treatment in processed foods like cheese, biscuits, roasted nuts, roasted beef etc. and attributed in a positive manner in terms of consumer acceptance (Krist et al., 2005). Similarly, 2-methyl propanal and benzaldehyde-phenylmethanal are determined only in the enzyme treated samples. Ethanol is the single one detected only in the control but not roasted or enzyme treated samples. Compared to the study of Krist et al., (2005) more volatile aromatic substances have been identified in this study and this result may be related to the different pre-treatments applied before cold pressing. The 30 different volatile compounds listed by Krist et al., (2005) were identified with high amounts in our samples, although camphene, pentanal, butane-2,3-diol, and hexalactone were not identified. As expected, other lactones and pentanol that are identified in the aromatic profile in this study are similar because of the same biomaterials.

The multiple relationships among the 12 sensory descriptive terms and 75 different volatile compounds of the samples can be visualized simultaneously by a technique called multidimensional scaling (MDS) which provides a closeness map in dimensions. Since the data are composed of both nominal and ordinal scale numbers and showed large variations, a standard deviation of 1 was applied prior to

the MDS technique. In this statistical technique, the validity of the closeness map is defined by the stress value, and states that a stress value under 0.025 indicates very good; 0.025–0.05 indicates good; 0.05–0.1 indicates acceptable and 0.1-0.20 indicates poor data separation. Figure 1 shows 4 different MDS maps produced from the data. The relationship of the sensory descriptive terms and measured volatiles only in the control samples is shown in Fig. 1 (a). There was no clear group formation but some closeness can be observed. In the control samples, the sensory terms of waxy, fermented, poppy seed, hazelnut and hay were distributed separately from each other and from the volatile compounds. Similarly α -pinene was located away from all the other volatiles. Astringent and spicy descriptors, and mercaptoacetic acid (cn56) and pentanoic acid (cn73) were located closely.

The aroma/flavor descriptors and sensory terms are quite related. Similarly, bitter is in close proximity with 4-hydroxyphenylacetic acid (cn41), benzyl alcohol (cn47) and (S)- Δ -caprolactone (cn23). In fact, these volatiles are mostly defined as sweet and floral, and not to be found related with the bitter definition. 2-Heptanone (cn20) and 3-octen-2one (cn39) were closer to the throatcatching term so these aromatics were defined with fatty, creamy and similar notes. Earthy and roasted terms, y-pentalactone (cn8) and n-hexanal (cn64) were also closer in the control samples with no known aromatic definition relationship. The MDS map of only the roasted samples is shown in Fig. 1 (b). The sensory term hazelnut is separated from all others and located far from the volatile compounds. This is an unexpected result since several of the pyrazines are known to yield nutty flavors. But in our study variations among the aromatic measurements were larger and small differences in sensory attributes may not have been perceived by the panel. The sensory terms hay, bitter, sweet aromatic, earthy and waxy were somewhat closer to each other and to the volatiles of 2-(dimethylamino)-3-phenylbenzo[b]thiophene (cn35), 1-hexenol (cn3), 1-pentanol (cn5), 2,5-dimethyl pyrazine (cn16), 3-methyl butanal (cn36) and (S)-deltacaprolactone (cn23). Similarly astringent, roasted, spicy and poppy seed terms and hexanal (cn64), 2-nonanone (cn27), 2,3-butanediol (cn12) and mercaptoacetic acid (cn56) were located closer to each other. Lastly, in these roasted samples, throat catching was closer to decanal (cn61), heptanal (cn62), 2,4-nonadienal (cn15), 3-ethyl-2,5 dimethyl pyrazine (cn32) and 2-pentanone (cn30). In Fig. 1 (c), the MDS map of the only enzyme treated samples is shown. Poppy seed and earthy terms were located far away from each other and from all others. Hazelnut and roasted terms were closer to each other but not closer to any volatile compounds on the map. Fermented and throat catching

s Oils
seeds
Poppy
the
of
Compounds
Volatile
TABLE 3.

		I									
				Ofis 8 (white)			Ofis 3 (blue)			Ofis 4 (yellow)	
Comp. Num RI ^a	Volatile	Aroma Quality	Control	Roasted	Enzyme	Control	Roasted	Enzyme	Control	Roasted	Enzyme
1 1025	cymene	Fresh, woody, spicy	88.72±29.27	152.13±0.01	124.87±4.43	ŊŊ	ND	357.71±95.45	53.5±0.00	ND	106.73±14.29
2 1872	1,2-benzenedicarbox- ylic acid	Planty, fatty	ND	ND	ND	222±0.02	658±321.14	ND	ND	289.5±0.00	11.57±0.03
3 872	l-hexanol	Sweet, fruity, green	2953±46.66	2373±323.85	1675.51±86.54	3385.18±6.92	922±107.48	3563.36±615.7	2530.81±468.6	2540.72±998	1202.08±0.01
4 983	1-octen-3-ol	Soil, fungal, mushroom	728±245.2	196 ± 0.01	418.17±172.15	2797.5±1002.7	ND	60.79 ± 0.00	1668.74±654.9	505.04±185.6	63.93±0.02
5 771	1-pentanol	Fermented, cereal	569±186.67	1181.45±15.66	578.93±190.13	833.24±38.53	810.85±44.7	ΟN	726.5±108.5	1779.31±907.9	495.68±0.04
6 912	γ -butyrolactone	Creamy, fruity, peach, milky	641.71±11.72	1047.5±12.02	2916.2±876.9	305±43.84	266.5±0.05	1154.84±275.8	447.73±2.26	ND	ND
7 1364	γ -nonanolactone	Sweet, tabocco, cacao, woody	84.05±29.82	101.58 ± 6.7	56.85±38.12	32.94±0.02	138.95±35.28	128.91±31.66	ND	39.19 ± 0.00	65.34±0.36
8 956	γ -pentalactone	Creamy-oily, citrus	13.58±2.24	635.5 ± 0.01	15.94 ± 0.02	9.53±0.01	7.1±0.04	ΟN	ŊŊ	6.84 ± 0.01	QN
9 1260	γ -octalactone	Planty, coconut sweet, tabocco	23.88±3.91	30.95±2.48	67.99±23.56	42.57±19.55	47.72±10.54	59.38±25.27	ND	30.6 ± 0.03	28.9±0.67
10 1262	5 pentyl 2(3H) furanone	Tropical fruit	ND	ND	ND	32.94±0.02	ND	ND	15.79±1.61	20.67±0.02	43.77±4.51
11 1344	5 pentyl 2(5H) furanone	Sweet, caramel	ND	38.15 ± 0.27	ND	16.47±0.01	106.99±22.09	67.1±33.58	ND	44.17±14.57	47.59±10.62
12 795	2,3-butanediol	Fruity, creamy- oily, butter	ND	ND	1622.16±536.3	ŊŊ	ND	9873.5±0.01	405.24±8.76	ND	ND
13 1086	2,3-dimethyl -5-ethyl pyrazine	Nutty, roasted, astringent	ND	64.51±0.74	ND	ŊŊ	ND	ND	ND	ND	ND
14 1316	2,4-decadienal	Green, fatty, fried	ND	11.83±3.51	ND	5.55±0.00	52.13±0.65	ND	ND	ND	16.24 ± 0.03
15 1214	2,4-nonadienal	Nutty, fatty, floral	ND	11.61±1.18	ND	ND	33.6±3.35	ΟN	ND	25.79±0.00	8.55±0.03
16 909	2,5-dimethyl pyrazine	nutty, peanut, mold, roasted	ND	488.86±103.03	ND	ŊŊ	176.62±7.6	ND	ND	745.1±0.00	1515.58±402.6
17 1374	2-butyl 2-octenal	Green, grass, fresh	ND	18.6±1.52	ND	17.51±6.78	47.21±14.29	38.17±12.38	13.26±0.23	20.03±0.07	30.92±12.65
18 1117	2-ethyl hexanoic acid	Planty, grass, moldy	295.5±0.01	ND	ND	4696.5±0.02	1725.37±576.8	ND	ND	ND	1270.67±981.6
19 1080	2-ethyl-3,5-dimethyl pyrazine	Nutty, peanut, caramel, roasted	ND	409.15±186.88	ND	ND	ND	ND	ND	ND	ND
20 891	2-heptanone	Creamy-cheese, green waxy	1447.5±23.33	3363±581.24	1893.62±153.6	3385.5±129.4	4363.5±84.14	3580.52±1230.2	1574±265	3703.69±1070.99	2381.42±688.77
21 959	2-heptenal	Grasssy fruity, fatty, fresh	4.57±0.01	442±0.04	1198.47±365.67	QN	48.19±12.76	608±0.01	ND	ND	396±0.02
22 791	2-hexanone	Eteric, burning	ND	805.64±205.97	379.45 ± 0.01	830.2±280.96	1014.64 ± 29.19	658.68 ± 0.03	ND	925±243.24	589.88±208.9
23 1093	Δ -caprolactone	Sweet, planty, fatty	58.15±18.6	131.1±11.82	43.39±0.01	51.36±0.01	ND	ŊŊ	126.92±16.08	ND	111.88±88.04
24 658	2-methyl butanal	Chocolate, hazelnut. malt	ND	449.4±0.14	6899.77±2275	ND	ND	ND	ND	565.79±110.01	ŊŊ

8 • D.D. Emir, O. Güneşer and E. Yılmaz

Offs 8 (white) Offs 8 (white) Control Roasted Enzyme C $ulty$ ND ND S34.65±0.03 C C C $ulty$ ND 78.59±7.65 ND S34.65±0.03 C C $ulty$ ND 78.59±7.65 ND								Concentrati	on of the Volatile C	Concentration of the Volatile Compound (ng/kg oil) ^b			
ModelAnotherAnotherRouteRouteRouteRouteRouteRoute (0) $2uthyl prynusW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl prynusW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}(0)2uthyl underW_{01}W_{01}W_{01}W_{01}W_{01}W_{01}W_{01}$						Ofis 8 (white)			Ofis 3 (blue)			Ofis 4 (yellow)	
< 600 $2methyl preprint Snyth ND SA 555 (0) ND ND ND 100 2methyl preprint Barry, solid ND 389 3475(5) ND ND ND 100 2methyl preprint Ways, green 41452 90275(5) 800 561(1) 800 1114411.3 ND ND 800 1114411.3 800 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 1114411.3 111441.3 111441.3 111441.3 111441.13 111441.13 111441.13 111441.13 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 111441.3 1111441.3 111441.3 $	Comp. Num		Volatile	Aroma Quality	Control	Roasted	Enzyme	Control	Roasted	Enzyme	Control	Roasted	Enzyme
100 Description ND ND ND ND ND 101 $2 paranise Mays perio ND 3 3 3 2 4 2 1 3 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	25	<600	2-methyl propanal	Spicy, burnt-malty	ŊŊ	ND	534.65±0.03	ŊŊ	ŊŊ	ND	ND	ND	376.16±121.09
	26	1016	2-ethyl-methyl-5- pyrazine	Beany, soil	ND	78.59±7.65	ND	ŊŊ	ŊŊ	ND	ŊŊ	32.71±0.04	ND
	27	1091	2-nonanone	Waxy, green	43.46±9.24	90.27±8.35	67.41 ± 30.56	69.47±12.7	86.95 ± 0.8	198.96 ± 65.65	ŊŊ	68.54±28.97	ND
(8) 2-octent Plan onl, way ND 006±00 ND 167±002 56.61±30.80 20.43±001 68 2-pentyl fram Fermine, 0.06±20.43 27.43±11.03 73.146±735.54 72.015±66.01 58.01±26.03 100 2-pentyl fram Fermine, 0.06±20.43 18.61±0.03 59.43±54.03 73.146±75 72.015±66.04 58.05±24.54 78.015±24.55 78.015±24.54 78.015±24.54 78.015±24.54 78.015±24.54 78.015±24.54 78.015±24.54 78.015±24.54 78.015±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.54 78.012±24.55 78.012±24.55 78.012±24.55 78.01±24.46 78.012±24.55 78.01±24.46 78.012±24.55 78.012±24.55 78.012±24.55 78.01±24.46 78.01±24.46 78.01±24.46 78.01±24.46 78.01±24.46 78.01±24.46 78.01±24.46 78.01±24.46 78.01±24	28	1161	2-nonenal	Cucumber, oily, soapy	ND	ND	ND	ND	116.1±2.97	111.44±11.78	ND	ND	63.16 ± 20.85
68 2-pentanone Fermented, constrained 0164:20145 21:430-1150 88.071-516.8 11:433.54:013.59 7402.154.66.1 760.792.56 101 2-pentyl furan Greux, ool, casoa 12:11:66.46 18:14.003 2990.42:401 7921.66:755.5 420.154.66.61 750.792.56 103 3-ethyl-2-anchyl pyrazia Greux, ool, casoa ND ND 167.73:40.01 ND 107.73:42.07 103 3-ethyl-2-anchyl pyrazia Banumayopor 15.86:42.07 17.81:44.13 11.77.74.20.78 10.07.94:290.24 103 3-ethyl-2-anchyl pyrazia Banumayopor 15.86:42.03 97.14:15.4 17.77.24.0.78 ND 10.24:24.14.6 103 3-ethyl-2-anchyl banon Banu-bano Banu-bano 209.54:14.16 312.44:16.6 ND 10.777.24.078 ND 103 3-ethyl bunan Banu-bano Banu-bano 80.4:4:13.5 ND ND 100.79:2:2:0:4:0:0:5 103 3-ethyl bunan Banu-bano Banu-bano 80.4:4:13.5 ND ND ND 100.77:2:2:0:4:0:0:5	29	1059	2-octenal	Plant oil, waxy	ND	90.08 ± 0.06	ND	167 ± 0.02	505.61 ± 298.94	230.43 ± 0.01	ND	ND	202.16 ± 3.06
	30	685	2-pentanone	Fermented, woody	1016±220.45	3274.92±1209	1868.07±516.8	11453.5±7013.79	7492.15±686.1	7650.79±2567	1368.5±202.5	6386.11±827.5	2447±907.54
	31	166	2-pentyl furan	Green, soil, caramel	1271±66.46	1861±0.03	2849.43±940.3	5751.66±3755.5	4269.65±1410.46	4870.29±482.55	1680.6 ± 330.6	2617.1±707.25	3959.48±1310.44
	32	1080	3-ethyl-2,5 dimethyl pyrazine	Roasted, nutty, cacao	ND	ND	167.73 ± 0.01	ND	333.52±42.56	ND	ND	733.86±108.69	ŊŊ
	33	1033	3-ethyl-2-methyl 1,3-hexadiene	Hazelnut, peanutpopcorn	63.56±20.97	127.81±6.18	213.97±109.42	153.85±50.77	206.52±14.61	312.24±74.62	61 ± 0.05	242.05±87.56	273.92±14.04
	34	710	3-hydroxy-2-butanone (acetoin)	Milky, buttery, creamy	2009±501.2	917.5±0.02	4844.69±1598.74	ND	ND	10607.94 ± 2940.24	1805.5 ± 0.03	2364.12±432.92	4483.68±1567
649 3-methyl butanal Burnt-maly, ebocolate 38.5.5±0.03 93.66±21.68 87.03±134.587 ND ND 327.564±1045.65 741 3-methyl-butanol buorolate 6.0001 fttilty 6.04113.13 ND 2019.5±92.418 325.62±0.01 ND 77.84±21133 987 3-octanone Mushroom- 240.25±55.09 ND 329.38±0.04 015.40.02 ND 677.84±22133 987 3-octanone Mushroom- 240.25±55.09 ND 329.38±0.04 015.40.02 ND 677.84±22133 987 3-octanone Mushroom- 240.5190 ND 326.54.001 ND 677.84±20133 987 3-octanone Mushroom- 285.5±39.35 22.573±0.07 ND ND 677.84±20133 1773 4-bytylbenzaldehyde Biter almond ND 286.5±8.47 ND ND 677.34±20.30 877.34±20.30 1703 7-eupolacone Biter almond ND 780.7±255.65 423.08±20.30 45.77±6.37 87.77±6.37 87.92±1.65.10 76.77±35	35	1057	2-(dimethylamino)- 3-phenylbenzo[b] thiophene	I	468±103.23	270.38±14.67	394.14±135.4	579.11±185.1	177.7±20.78	ŊŊ	258.56±0.01	218.08±52.44	304.24±114.21
74 $3methyl-lehtandle Alcohol, fruity, edohol, edohol, fruity, edohol, ed$	36	649	3-methyl butanal	Burnt-malty, chocolate	385.5±0.03	493.66±21.68	3870.3±1345.87	ND	ŊŊ	3272.64±1045.65	ŊŊ	599.63±74.43	2897.35±622.74
97 3-octanone Mushroom- 240.23 ± 5.00 ND 329.33 ± 0.04 101.5 ± 0.02 ND 67.84 ± 21.33 1179 $3-octan-2-one$ Soil, fatty, hay 2855 ± 0.01 126.05 ± 20.07 ND 81.4 ± 28.45 ND 67.84 ± 20.13 1179 $4-ethyl benzealdehyde Bitter almoud ND 28.65\pm8.47 ND 80.14\pm28.45 139.84\pm0.02 1575 4-ethyl benzealdehyde Bitter almoud ND 28.65\pm8.47 ND 8.77\pm16.37 ND 87.77\pm16.37 ND 1575 ethyl benzealdehyde Bitter almoud ND 28.65\pm8.47 ND 87.7\pm16.37 ND 87.7\pm16.37 ND 1055 reaprolectore Tabocco, 76\pm0.01 29.54\pm16.816 273.43\pm120.34 ND 87.7\pm16.37 ND 936 ceprimence Tabocco, 76\pm0.01 275.43\pm120.34 78.99\pm13.63 77.53\pm10.03 966 cotananin-like 75.6\pm1.00 73.1\pm3.324 78.99\pm9.01 767.7\pm9.23.54 78.99\pm9.01 $	37	741	3-methyl-1-butanol	Alcohol, fruity, banana	649±113.13	ND	2019.5±924.18	325.62±0.01	ŊŊ	ND	ŊŊ	ND	Ŋ
	38	987	3-octanone	Mushroom- moldy	240.25±25.09	ND	329.38±0.04	101.5 ± 0.02	ŊŊ	677.84±221.33	ŊŊ	ND	ŊŊ
	39	1041	3-octen-2-one	Soil, fatty, hay	28.55 ± 0.01	126.05±20.97	ND	80.14 ± 28.45	219.38±62.59	139.98 ± 0.02	41.29 ± 0.05	152.15±65.2	95.44±6.34
1575 4 hydroxyphenylacetic Honey, sweet 82.55±393.85 232.73±0.01 709.72±235.65 423.08±226.39 621.21±83.14 ND 1055 7-caprolactone Tabocco, 76±0.01 239.46±19.69 345.63±168.16 273.43±120.34 309.42±3.42 261.53±0.03 936 α-pinene Terpentin, like 75.68±6.109 37.31±0.00 73.7±33.24 78.99±9.01 59.6±1.48 167.78±95.31 936 α-pinene Woody spicy ND 100.84±5.88 ND ND 86.21±0.02 271.59±0.04 940 a-terpinene Woody spicy ND 100.84±5.88 ND ND 86.21±0.02 271.59±0.04 941 a-terpinene Woody spicy ND 100.84±5.88 ND ND 86.21±0.02 271.59±0.02 942 benzaldelyde Bitter almond, ND ND 83.6±32.65 ND ND 83.6±32.58 1046 benzaldelyde Bitter almond, ND ND 83.7±4303.65 ND 103.2±8.49 499.23±0.02 1036	40	1179	4-ethyl benzealdehyde	Bitter almond	QN	28.65±8.47	ND	ŊŊ	45.77±16.37	ND	ND	37.22 ± 12.28	32.87±8.51
	41	1575	4-hydroxyphenylacetic acid	Honey, sweet	825.5±393.85	252.73±0.01	709.72±235.65	423.08±226.39	621.21±83.14	ND	293.12±0.02	1353.5 ± 0.03	702.35±71.77
936 α-pinene Terpentin, 5.68±6.109 37.31±0.00 73.7±33.24 78.99±9.01 59.6±1.48 167.78±95.31 1016 α-terpinene Woody, spicy, mint ND 100.84±5.88 ND ND 86.21±0.02 271.59±0.04 962 benzaldehyde Bitter almond, mint, sugar ND ND 132.92±0.02 ND 86.21±0.02 271.59±0.04 963 benzaldehyde Bitter almond, ND ND 132.92±0.02 ND 86.51±0.02 271.59±0.04 964 benzenaectaldehyde Bitter almond, ND ND 83.74±30.365 ND 83.6±32.58 1046 benzenaectaldehyde Flower, noney, ND 89.01±11.05 83.74±30.365 ND 103.2±8.49 499.23±0.02 1036 benzeneethanol Flower, noney, ND ND 170.29±51.12 ND ND 799.2±8.49 499.23±0.02 1036 benzeneethanol Flower, noney, ND ND 170.29±51.12 ND ND 799.23±0.02 1036 benzeneethanol Floral, ND ND	42	1055	γ -caprolactone	Tabocco, coumarin-like	76±0.01	259.46±19.69	345.63±168.16	273.43±120.34	390.42±3.42	261.53±0.03	ŊŊ	290.93±75.05	ND
I016 a-terpinene Woody, spicy, mit ND 100.84±5.88 ND ND 86.21±0.02 271.59±0.04 962 benzaldehyde Bitter almond, mint. ND ND 132.92±0.02 ND 86.21±0.02 271.59±0.04 963 benzaldehyde Bitter almond, burnt, sugar ND ND 132.92±0.02 ND 83.6±32.58 1046 benzenaectaldehyde Flower honey, ND 89.01±11.05 883.74±30.365 ND 103.2±8.49 499.23±0.02 1036 benzenenethanol Flovat, ones leaf ND ND 170.29±51.12 ND ND ND 1036 benzenenethanol Flovat, ones leaf ND ND 170.29±51.12 ND ND ND 1036 benzenenethanol Flovat, ones leaf ND ND 170.29±51.12 ND ND ND 1036 benzenenethanol Flovat, ones leaf ND ND ND ND ND 1036 benzenenethanol Florat, ones leaf ND ND	43	936	α-pinene	Tterpentin, spicy	75.68±6.109	37.31 ± 0.00	73.7±33.24	78.99±9.01	59.6±1.48	167.78±95.31	73.98±2.67	755.63±256.78	70.24±16.01
962 benzaldehyde Bitter almond, burnt, sugar ND ND 83.54±0.02 ND 83.6±32.58 1046 benzeneacetaldehyde Flower honey, rose leaf ND 89.01±11.05 883.74±303.65 ND 103.2±8.49 499.23±0.02 1036 benzenenethanol Florat, fenolic, balsamic ND ND 170.29±51.12 ND ND ND 1030 imonene Circus, weet, terpenic 45.8±16.14 67.73±17.83 176.57±91.42 95.98±0.02 101.44±19.17 257.28±120.71	4	1016	α-terpinene	Woody, spicy, mint	ND	100.84±5.88	ND	ND	86.21±0.02	271.59±0.04	ŊŊ	ND	ND
1046 benzeneacetaldehyde Flower honey, rose leaf ND 89.01±11.05 883.74±303.65 ND 103.2±8.49 499.23±0.02 1036 benzenemethanol Floral, fenolic,balsamic ND ND ND ND ND 1030 limonene Citrus, sweet, terpenic 46.58±16.14 67.73±17.83 176.57±91.42 95.98±0.02 101.44±19.17 257.28±120.71	45	962	benzaldehyde	Bitter almond, burnt, sugar	ND	ND	132.92±0.02	ND	ND	83.6±32.58	ND	ND	128.41±57.09
1036 benzenemethanol Floral, fenolic,balsamic ND ND <td>46</td> <td>1046</td> <td>benzeneacetaldehyde</td> <td>Flower honey, rose leaf</td> <td>ND</td> <td>89.01±11.05</td> <td>883.74±303.65</td> <td>ND</td> <td>103.2±8.49</td> <td>499.23±0.02</td> <td>ŊŊ</td> <td>131.6±6.22</td> <td>1464.11±708.4</td>	46	1046	benzeneacetaldehyde	Flower honey, rose leaf	ND	89.01±11.05	883.74±303.65	ND	103.2±8.49	499.23±0.02	ŊŊ	131.6±6.22	1464.11±708.4
1030 limonene Citrus, sweet, 46.58±16.14 67.73±17.83 176.57±91.42 95.98±0.02 101.44±19.17 257.28±120.71 terpenic	47	1036		Floral, fenolic,balsamic	ND	ND	170.29±51.12	ND	ŊŊ	ND	62.4±0.03	ND	QN
	48	1030	limonene	Citrus, sweet, terpenic	46.58±16.14	67.73±17.83	176.57±91.42	95.98±0.02	101.44±19.17	257.28±120.71	31.79±0.01	101.58±38.52	243.1 ± 109.65

TABLE 3 (Continued)

					Ofis 8 (white)			Ofis 3 (blue)			Ofis 4 (yellow)	
Comp. Num	RI^{a}	Volatile	Aroma Quality	Control	Roasted	Enzyme	Control	Roasted	Enzyme	Control	Roasted	Enzyme
49	919	dimethyl sulfone	sulfur-burnt	197±22.62	382.35±4.74	467.53±132.55	ND	138.88±11.47	102.41 ± 0.04	110.68 ± 10.32	336.42±87.08	282.94±87.37
50	840	dimethyl sulfoxide	Fried, mushroom	ŊŊ	1357.5±309.01	ŊŊ	ŊŊ	431.13±135.95	ND	QN	522.2±31.39	ND
51	> 009>	ethanol	Sweet	1993.5 ± 1263.6	ND	ND	816.55 ± 63.01	ND	ND	1081.5 ± 283.5	ŊŊ	ND
52	1154 a	acrylic acid	Plastic	ND	77.28±0.05	81.9±5.35	101.32±21.67	105.85 ± 2.61	138.18 ± 53.72	ND	90.87±40.95	91.38±13.83
53	1060	γ-terpinene,	Wood, citrus, oily, tropic	Ŋ	183 ± 0.00	ND	QN	ND	224.74±0.01	ŊŊ	640.5±242.53	ND
54	1078 1	heptanoic acid	Waxy, fermented, fruity, rancid	2193±601.2	1642±0.01	1842.86±0.01	QN	3458±0.03	ND	2251.7±0.04	15221±0.01	ŊŊ
55	1006 1	hexanoic acid	Sour, fatty, cheesy	ŊŊ	12793.5±241.1	4648.24±0.02	13741.5 ± 0.03	7763.24±788.8	2670.24 ± 0.01	82909±34876.89	ND	74234.15±25597
56	1672	mercaptoacetic acid	Decayed onion	1608 ± 455.65	1489.32 ± 367.9	1165.89 ± 210.04	803.14 ± 367.76	2516.5 ± 1075.5	5991.18 ± 6009.4	1669 ± 246	6053.73± 2008.45	1197.25±791.6
57	1739	methanone, (3,4-dimethylphenyl) (2,4,6-trimethylphenyl)	Balsamic, metallic, astringent	16.43±1.81	21.99±4.61	ŊŊ	ŊŊ	43.68±0.04	ND	ND	ND	16.25±2.74
58	1158 1	m-hydroxymandelic acid, tris(trimethylsilyl)	Scentless	12921.5±3669.17	ND	ND	ŊŊ	ND	18170.95±11765.89	ŊŊ	4771±450	11680±3765
59	1184 1	naphthalene	Chemical, burning	27.91±9.78	51.21±3.32	63.05±27.92	76.15±26.13	123.64±17.64	205.21 ± 80.73	25.01±6.14	ND	33.14 ± 0.9
09	1312	∆-cadinene	Plant, woody	57.65±0.49	65.63±6.28	88.62±33.88	19.96 ± 11.27	ND	ND	ND	37.11 ± 0.8	37.24 ± 0.03
61	1205	decanal	Waxy, orange	17.49 ± 9.68	43.71±9.71	ND	35.37±12.65	85.02±11.92	94.5±32.57	17.44±1.88	79.57±12	58.22±13.69
62	006	heptanal	Oily, plant, rancid, waxy	ŊŊ	368.47±1.4	303.15±56.98	ŊŊ	867.3±17.95	975.51±262.47	598.64±158.35	1201.55±884.6	350.74±175
63	1960	palmitic acid	Creamy-waxy, tallow	ŊŊ	857.5±123	237.5±0.00	5.14 ± 0.89	12320±4078.56	ND	ŊŊ	508.56±245	602.67±245
64	800	hexanal	Grassy, oily	3427.5±1978.7	5945.5±4.49	7024.64±58.4	6329±200.78	7021±1851.2	13181.5 ± 678	7735.16 ± 68.16	11711±64.65	9631±2367
65	1021	hexanoic acid	Fresh cheese, sour	Ŋ	ND	15209.5±978	108482±6789	56959.2±19534	ND	ŊŊ	591627.5±215356.9	151631.5±10809.54
99	1102	nonanal	Waxy, fatty	145±97.58	194.55 ± 10.11	360.11 ± 164.63	ND	463.07±53.46	586.74±48.01	333.06 ± 22.94	376±145.09	508.69 ± 55.1
67	1001	octanal	lemon, waxy	ND	ND	ND	ND	860±245	ND	ND	ND	1624.9 ± 276.45
68	1224	nonanoic acid	Fermented milk, waxy, cheesy	QN	240±78.65	1338.34±526.6	734.94±242.53	ND	1137.29±455.9	ND	ND	1354.28±700
69	1171	octanoic acid	Rancid, plant oil	1390±431.89	ND	2238.15±578	2516.63±830.5	ND	ND	ND	ND	ND
70	1196 6	ethyl octanoate	Moldy, fruity-ananas	287±91.92	631.22±137.48	2618.01±749.56	ŊŊ	1439.18±547.32	762.2±234	ND	3686±453	1668.92±814.0
71	1172 6	caprylic acid	Fatty	ND	3775.65±94.26	1545.94±276	ND	3227.13±347.9	9538.37±3447.65	1366 ± 443	15579.06 ± 6748.03	4323.84 ± 930
72	1860]	pentadecanoic acid	Waxy	ND	497±12.72	ND	ND	379±49	2038.08 ± 213	ND	103.62 ± 0.16	134.5 ± 0.56
73	670]	pentanoic acid	Cheesy, rancid	46158±9149	ND	20587 ± 660.43	6660.5±2367.89	Ŋ	17851.43 ± 3286	65331.5±4912.5	ND	12886.35±7315.57
74	1414 1	miristic acid	Waxy, soapy	ND	766.14 ± 326.65	ND	186.47 ± 78.43	129.5±35	1553.55 ± 850.6	ND	ND	ND
75	1084 1	tetrahydro thiazole	Roasted, cooked	25.68±3.27	58.93±3.72	ND	109.96 ± 15.93	144.35 ± 4.51	ND	ND	ND	108.44 ± 67.11

10 • D.D. Emir, O. Güneşer and E. Yılmaz

TABLE 3 (Continued)

FIGURE 1. Geometric Representation of Volatile Compounds and Sensory Properties in (a) Control Samples (Stress=0.02370; RSQ=0.99921), (b) Roasted Samples (Stress=0.04813; RSQ=0.99598), (c) Enzyme Treated Samples (Stress=0.03811; RSQ=0.99753), and (d) All Samples Together (Stress=0.05593; RSQ=0.99567) (Abbreviations: cn1-cn75; compounds from 1 to 75 listed in Table 2)

terms were closer to 1-hexenol (cn3), 2-heptenone (cn20) and 3-octanone (cn38) while waxy term and dimethyl sulfoxide (cn50), 2-ethyl-3,5-dimethyl pyrazine (cn19), 2-methyl-5-pyrazine (cn26) and y-octalactone (cn9) were located nearby. Bitter, astringent and sweet aromatic were somewhat closer to each other and to 3-methyl butanal (cn36), benzaldehyde-phenylmethanal (cn45), 2-heptanal (cn21), benzeneacetaldehyde (cn46). Here the sensory definitions of the compounds are related to the sensory terms. It seems that the term hay is closer to nonanoic acid (cn68) in these samples. Lastly, in Fig. 1 (d), all the samples are analyzed together for MDS proximities. Consequently, the terms poppy seed, hazelnut, roasted and fermented were far from each other and from the volatile compounds, while the terms astringent,

waxy, spicy and earthy were located closer to each other and to the volatiles. Sweet aromatic, bitter and hay were closer to 2-(dimethylamino)-3phenylbenzo[b]thiophene (cn35), ethanol (cn51) and (S)- Δ -caprolactone (cn23). Throat catching was separate from all other sensory terms but closer to n-decanal (cn61), 2-hexanone (cn22), hexenal (cn64) and 2-heptanone (cn20). It is important to keep in mind that, when creating MDS maps, the mean values of the sensory measurements and actual concentration values of the analyzed volatile compounds are used as the data sets. It is well known that every aromatic compound has its own odor threshold value, though odor threshold is not directly related to that compound's present concentrations. It is defined as the concentration where the odor of the compound is perceived by

the population or it is the lowest stimulus yielding a perceivable sensation. It is a molecular property and one aromatic may be perceivable at much lower or higher concentrations than another one (Meilgaard *et al.*, 1991). Hence, the lack of distinct group formations for the sensory definition termsvolatile compounds on the MDS maps is expected. But still at least, the MDS maps give an idea of how these values are located in relation to each other for the poppy seed oils produced by the cold pressing technique.

It was important to observe how consumers perceived the general sensory properties of the cold pressed poppy seed oils after determining their sensory definitions and volatile profiles. The sensory terms appearance, color, odor and taste were evaluated by consumers and the results are shown in Table 4.

Most of the scores were well over 4, indicating that consumers mostly liked the oils. Generally, the odor and taste of roasted samples were more liked than the control and enzyme treated samples. On the other hand, the enzyme treated samples had lower scores for odor and taste except for the ofis 8 sample. From the results of the consumer acceptance test data (Table 4), the best three samples were selected for the consumer preference test. The selected samples were ofis 3-roasted, ofis 4-roasted and ofis 8-enzyme treated. These 3 oils were prepared as triple sets with 3-digit number codes and served to 150 different consumers, and the percentages of consumer preference distribution are shown in Fig. 2. The ofis 4-roasted sample was the most preferred (53.55%), followed by the ofis 3-roasted (36.66%) and ofis 8-enzyme treated samples (10.00%). Clearly it can be observed that when consumers make a purely sensorial evaluation of the samples (without any health claim or price information), they prefer roasted samples; hence, the roasting of the poppy seed results in an enhancement in total oil acceptability.

4. CONCLUSIONS

This study has shown that sensory descriptive terms identified for the oils of different poppy varieties were not different, but the pretreatments applied prior to cold pressing are effective in changing the sensory properties of the poppy seed oils significantly. Seed roasting was identified as the best processing operation in terms of improved sensory quality of the poppy seed oils. Poppy seed oils are mostly defined as poppy seed, hazelnut, fruity and waxy according to the sensory descriptors and as fatty, nutty, waxy, fruity, creamy, roasted and sweet according to the aromatics measured in higher abundance with their aromatic identifications, hence, poppy seed oils can be claimed as aromatic and rich edible oils. There was no clear relationship among the 12 sensory defining terms and the concentration of the measured 75 aromatic volatiles present in the oils. This is an expected situation because odor perception is associated with each aromatic compound threshold value, rather than its concentration. On the other hand, the very diverse kinds and relative abundances of the aromatic volatiles in these differently prepared cold pressed oil samples were identified in this study. Consumer tests revealed that roasted samples are more liked than other oils, and roasted yellow poppy seed (ofis4) oil was the most preferred by the consumers among the other oil samples. As a result, seed roasting prior to the cold pressing of poppy seeds can be suggested for the best sensory quality in cold press oil production.

Sample	Treatment	Appearance	Color	Odor	Taste
Ofis 8 (white)	Control	$3.68 \pm 0.17^{\circ}$	$3.70 \pm 0.17^{\circ}$	3.54 ± 0.15^{B}	3.38±0.16 ^B
	Roasted	4.10 ± 0.14^{B}	4.04 ± 0.15^{B}	4.00 ± 0.16^{A}	3.98 ± 0.14^{A}
	Enzyme	4.84 ± 0.15^{A}	4.86 ± 0.14^{A}	4.04 ± 0.17^{A}	3.90 ± 0.17^{A}
Ofis 3 (blue)	Control	4.66 ± 0.11^{A}	4.52±0.11 ^A	3.70 ± 0.12^{B}	3.70 ± 0.14^{A}
	Roasted	4.70 ± 0.11^{A}	4.52 ± 0.12^{A}	4.11 ± 0.14^{A}	4.09 ± 0.14^{A}
	Enzyme	4.66 ± 0.15^{A}	4.54 ± 0.15^{A}	$3.45 \pm 0.17^{\circ}$	3.54 ± 0.16^{B}
Ofis 4 (yellow)	Control	4.48 ± 0.13^{B}	4.33 ± 0.13^{B}	4.02 ± 0.15^{B}	4.71 ± 0.61^{A}
	Roasted	4.82 ± 0.12^{A}	4.89 ± 0.11^{A}	4.49 ± 0.14^{A}	4.45 ± 0.15^{B}
	Enzyme	4.39 ± 0.15^{B}	4.41 ± 0.14^{B}	3.98 ± 0.17^{B}	$3.74 \pm 0.15^{\circ}$

 TABLE 4.
 Consumer Acceptance Test Results of the Poppy seed Oils (1: dislike extremely to 5: like extremely)*

*The values are mean \pm standard error (n=50).

 $^{A-C}$ Means followed by different superscript letters within each poppy seed sample represent significant differences in the treatments for the hedonic measurements.

Cold pressed poppy seed oils: sensory properties, aromatic profiles and consumer preferences • 13

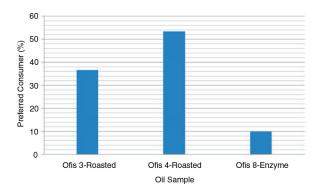


FIGURE 2. Consumer Preferences of the Selected Poppy seed Oil Samples (n=150).

5. ACKNOWLEDGMENTS

This study is funded by the TUBITAK (The Scientific and Technological Research Council of Turkey) Project No: 1110618. The authors are grateful for the fund. The authors also would like to thank the panel members for their participation and input during panel training.

REFERENCES

- AOCS. 1984. Method Cg 2-83. Official Methods and Recommended Practices of the American Oil Chemists Society. Champaign, Illinois, US. Aparicio R, Morales MT, Alonso V. 1997. Autentication of
- European virgin olive oils by their chemical compounds,
- Sensory attributes, and consumers' attributes. J. Agric. Food Chem., 45, 1076–1083. http://dx.doi.org/10.1021/jf960659h
 Avşar YK, Karagul-Yuceer Y, Drake MA, Singh TK, Yoon Y, Cadwallader KR. 2004. Characterization of nutty flavor in cheddar cheese. J. Dairy Sci. 87, 1999–2010. http://dx.doi. org/10.3168/jds.S0022-0302(04)70017-X
 Bockov D, 1006. Oliva. Oil Chemistry, and Tachnology
- Boskou D. 1996. *Olive Oil* Champaign, Illinois, US. Chemistry and Technology.
- Bozan B, Temelli F. 2003. Extraction of poppy seed oil using supercritical CO₂. J. Food Sci. 68, 422–426. http://dx.doi. org/10.1111/j.1365-2621.2003.tb05688.x
- Brühl L, Matthäus B. 2008. Sensory assessment of virgin rapeseed oils. Eur. J. Lipid Sci. Technol., 110, 608-610. http:// dx.doi.org/10.1002/ejlt.200700293
- Erinç H, Tekin A, Özcan MM. 2009. Determination of fatty acid, tocopherol and phytosterol contents of the oils of

various poppy (*Papaver somniferum* L.) seeds. *Grasas Aceites* **60**, 375–381. http://dx.doi.org/10.3989/gya.129508 Krist S, Stuebiger G, Bail S, Unterweger H. 2006. Detection of

- adulteration of poppy seed oil with sunflower oil based on volatiles and triacylglycerol composition. J. Agric. Food Chem. 54, 6385–6389. http://dx.doi.org/10.1021/jf060500x
- Krist S, Stuebiger G, Unterweger H, Bandion F, Buchbauer G. 2005. Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaversomniferum L.). J. Agric. Food Chem. 53, 8310-8316. http://dx.doi.org/10.1021/jf0580869
- Li C, Zhao X, Chen N, Chen Y. 1990. Chemical composition of the volatile oil of *papaver somniferum*. Lanzhou Daxue Xuebao, Ziran Kexueban **26**, 145–146.
- Lyon DH, Watson MP. 1994. Sensory profilling: a method for describing the sensory charecteristics of virgin olive oil. Grasas Aceites 45, 0-25
- Martinez ML, Marcela L, Mattea MA, Maestri DM. 2008. Pressing and supercritical carbon dioxide extraction of walnut oil. J. Food Eng. 88, 399-404. http://dx.doi. org/10.1016/j.jfoodeng.2008.02.026 NIST. 2008. NIST/EPA/NIH Mass Spectral Library. National
- Institute of Standards and Technology Standard Reference Data Program, Gaithersburg, MD 20899.
- Meilgaard M, Civille GV, Carr BT. 1991. Sensory Evaluation Techniques. CRC Press, Boca Raton, USA.
- MINITAB. 2010. Minitab 16.1.1 Statistical Software. Minitab,
- MINITAB. 2010. Mutuato 10.1.1 Statistical Software. Minitao, Inc, StateCollege, Pennsylvania, USA.
 Öğütçü M, Mendeş M, Yılmaz E. 2008. Sensorial and physico-chemical characterization of virgin olive oils produced dx.doi.org/10.1007/s11746-008-1220-3
- Öğütçü M, Yılmaz E. 2009. Path analysis for the behavior of traditional olive oil consumer in Çanakkale. *Food Sci. Technol. Res.* **15**, 19–26. http://dx.doi.org/10.3136/ fstr 15.19
- Özcan MM, Atalay Ç. 2006. Determination of seed and oil prop-
- erties of some poppy (*Papaver somniferum* L.) varieties. Grasas Aceites 57, 169–174.
 Pawliszyn J. 2012. Theory of solid phase microextraction. In Pawliszyn J., (Ed.) Handbook of Solid Phase Microextraction (pp.13–57). Waltham, MA, USA. http:// dx doi.org/10.1016/BP378.012.416017.0.0002.4 dx.doi.org/10.1016/B978-0-12-416017-0.00002-4
- Sheskin DJ. 2004. Handbook of Parametric and Nonparametric Statistical Procedures. 3rd ed., New York, USA
- Sing J, Bargale PC. 2000. Development of a small capacity double stage compression screw press for oil expression. J. Food Eng. 43, 75–82. http://dx.doi.org/10.1016/S0260-8774(99)00134-X.
- SPSS. 1994. SPSS Professional Statistics 10.1. SPSS Inc, Chicago, IL, USA.
- Wei F, Yang M, Zhou Q, Zheng C, Peng JH, Liu CS, Huang FH, Chen H. 2012. Varietal and processing effects on the volatile profile of rapeseed oils. *LWT-Food Sci. Technol.* 48, 323-329.
- WILEY. 2005. Wiley Registry of Mass Spectral Data. 7th edition (Fred. W. McLafferty) ISBN: 978-0471473251, CD-ROM.