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SUMMARY: Knowledge about the oil and water contents in olive fruits is required to determine orchard man-
agement, harvest time, and the oil extraction process. The simplification of procedures and of equipment based 
on NIR Spectroscopy is of major interest. Estimation models for oil and water contents on a fresh matter basis 
were developed by partial least square regression with NIR spectral data (700 wavelengths). For raw absorbance 
data the r2 for the test set reached 0.9 and 0.92 for oil and water contents; and RPIQt was 4.9 and 4.3, respec-
tively. The identification of a useful relation of the relative absorbance at 1724 nm and 1760 nm to the oil con-
tent allowed for restricting the wavelengths to three. For oil content the r2 showed 0.88 with ad RPIQt of 4.4. For 
water content the r2 value was 0.84 and the RPIQt was 3.1. Estimation performance with only three wavelengths 
was comparable to that obtained with PLSR with 700 variables. 
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RESUMEN: Espectros NIR y longitudes de onda específicas para la estimación del contenido de aceite y agua 
en aceitunas. El contenido de aceite y agua en aceitunas es requerido para gestionar el manejo del cultivo, el 
momento de cosecha y el proceso de extracción de aceite. La simplificación de los procedimientos y de los equi-
pos basados en espectroscopia NIR es de gran interés. Se desarrollaron modelos de estimación para el contenido 
de aceite y agua sobre peso fresco por regresión de mínimos cuadrados parciales con datos espectrales NIR 
(700 longitudes de onda). Para los datos de absorbancia crudos, el r2 para el conjunto de validación externa 
alcanzó 0.9 y 0.92 para el contenido de aceite y agua; y RPIQt fue 4,9 y 4,3 respectivamente. La identificación de 
una relación útil de la absorbancia relativa a 1724 nm y 1760 nm con el contenido de aceite, permitió restringir 
las longitudes de onda a tres. Para el contenido de aceite, el r2 alcanzó 0,88 y RPIQt fue 4,4. Para el contenido 
de agua, el valor de r2 fue de 0,84 y el RPIQt fue de 3,1. La calidad de la estimación con solo tres longitudes de 
onda fue comparable al obtenido con PLSR en 700 variables.
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1. INTRODUCTION 

The determination of the oil and water contents 
in olive fruits is of major interest for the oil sector. 
The official determination of oil content is currently 
made by the Soxhlet analytical method, which is 
time-consuming and requires previous sample prepa
ration along with the use of dissolvent products.  
Nuclear magnetic resonance (NMR) can also be used 
to determine oil content although the fruits should 
be previously dehydrated. García Sánchez et  al., 
(2005) studied the feasibility of the NMR technique 
in milled and dehydrated olive fruits. Fruit water 
content determination also requires sample dehy-
dration. Near Infrared Spectroscopy (NIRS) has 
been revealed as a successful technique which uses 
intact olive fruits as an alternative to such methods 
(Cayuela et al., 2009; Cayuela and Pérez-Camino 
2010; Gracia and León 2011; León-Moreno 2012; 
Salguero-Chaparro et al., 2013; Salguero-Chaparro 
and Peña-Rodríguez, 2014).

Easy measurements of oil and water contents in 
olive fruits are required by growers and the indus-
try. The implementation of NIR Spectroscopy 
combined with multivariate calibration methods to 
develop estimation models significantly simplify the 
determination procedures and provide an instanta-
neous method for the determination of such param-
eters with minimal sample preparation. 

Such methodology will be a useful tool for deci-
sions concerning orchard management. Irrigation 
increases olive and oil production but at the same 
time fruit water content increases and consequently 
the oil quality is modified. It has been shown that 
high irrigation reduces oil phenol content and oxi-
dative stability (Gómez-del Campo and García, 
2013). During fruit development, oil is accumulated 
in the olive pulp and the pattern of oil accumula-
tion depends on many factors such as cultivar, cli-
matic conditions and orchard management. An easy 
and fast oil and water measurement for fresh olive 
fruits will allow for monitoring the evolution of 
such parameters and for determining the best har-
vesting moment for high oil production (Morrone 
et al., 2018) in each of the different plots of the 
orchard (Herrera-Cáceres et al., 2017). From an 
industrial point of view, information about the oil 
and water contents in the fruit is required for opti-
mal oil extraction procedures, such as the time and 
temperature of malaxation (Tapanni et al., 2017) or 
the decanter feeding pump (Guerrilli et al., 2017).

According to Beer’s law, the use of NIR spectra is 
based on the linear relationship between the absor-
bance at certain wavelengths and the concentra-
tion of the compound producing such absorbance. 
However, the NIR spectra can be significantly 
affected by shifts in baseline and non-linearities 
mainly as a result of light scattering derived from 
the comparable size of the wavelengths within the 

NIR range and particle size in biological samples 
(Rinnan et al., 2009a). Many physical and chemical 
phenomena also produce deviations from the law, 
such as differences in effective path length, changes 
in sample sizes, molecular interactions, changes in 
refractive index, etc. (Rinnan et al., 2009b).

The spectral pre-processing techniques focussed 
on reducing deviations from Beer’s law are a major 
issue to enhance the performance of calibration 
models in industrial applications. Such techniques 
contribute to an improvement in model robustness, 
as discussed by Zeaiter et al., (2004 and 2005). 

Pre-processing techniques can be divided into 
two different categories. The first group comprises 
the normalization methods, as indicated by Zeaiter 
et al., (2005), also categorized as scatter-corrective 
methods by Rinnan et al., (2009a), which correct the 
shifts and the trends in baseline and curvilinearity, 
and multiplicative interference, mainly due to scat-
tering. This group includes standard normal variate 
(SNV) transformation, robust normal variate trans-
formation, the de-trend (DT) method, multiplicative 
scatter correction (MSC), inverse MSC, extended 
MSC, and extended inverse MSC.

The second group accounts for smoothing to 
reduce noise and the differentiation (or spectral 
derivatives) to correct peak overlap and constant 
or linear baseline drift. This group includes the 
Savitzky and Golay (SavGol) algorithm used for 
smoothing, the first derivative to remove the addi-
tive constant background effects and the second 
derivative which removes the baseline linear slope 
variations and additive effects.

Cayuela et al., (2009) and Cayuela and Pérez-
Camino (2010) applied spectral pre-treatments such 
as MSC, SNV and SavGol derivatives to the NIR 
spectra of intact olive fruits. Models were obtained 
with the full spectrum ranging from 1100 nm to 
2300 nm. Partial least squares regression (PLSR) 
models predicted oil content related to both fresh 
weight and to dry matter, with correlation coef-
ficients (r) between actual and predicted values 
ranging from 0.78 to 0.89. Nine and ten latent vari-
ables (LV) were selected in corresponding models, 
with values for the residual predictive deviation 
(RPD) ranging from 2.77 to 3.18. For fruit mois-
ture Cayuela et al., (2009) obtained a model that 
achieved a calibration coefficient (RC) of 0.943 
and cross-validation coefficient (RCV) of 0.895; 
and Cayuela and Pérez-Camino (2010) obtained a 
model with eight latent variables that achieved an 
RC of 0.792 and RCV of 0.759, with RPD of 2.51. 
Also for intact olive fruits, Gracia and León (2011) 
and León-Moreno (2012) acquired spectra in the 
wavelength region of 1100 to 2300 nm at 1 nm inter-
vals (1201 wavelengths). Prediction models were 
obtained by portable NIR spectroscopy with nine 
latent variables and an r ranging from 0.89 to 0.94, 
with RPD from 2.63 to 2.88. In such work spectral 
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pre-treatments did not improve model performance. 
Salguero-Chaparro et al., (2013) obtained spectral 
information in the wavelength range between 950 
and 1690 nm, at a resolution of 2 nm (371 wave-
lengths). Moisture and fat contents were determined 
in intact olive fruits under on-line conditions. The 
pre-processing treatments MSC and SNV-DT were 
applied. The highest coefficients of determination 
(R2) were obtained with the latter. For moisture R2 = 
0.87, RPD = 2.76 and 7 latent variables; for oil con-
tent, R2 = 0.79, RPD = 2.37 and 8 latent variables. 
Salguero-Chaparro and Peña-Rodríguez (2014) 
obtained on-line spectra from 380 to 1690 nm, every 
2 nm (656 wavelengths); and off-line spectra from 
400 to 2500 nm, every 2 nm (1051 wavelengths). 
These authors applied SNV transformation fol-
lowed by DT and first derivative SG in their study 
focused on the comparison between the on-line and 
off-line NIRS analysis of intact olives. The PLSR 
provided coefficients of determination of predic-
tion (r2) for fat content ranging from 0.82 to 0.86, 
and RPD from 2.08 to 2.51. For moisture content, 
the least squares support vector machine algorithm 
(LS-SVM) gave the best results with r2 = 0.91 and 
RPD = 3.05. Fernández-Espinosa (2016) measured 
NIR spectra in the wavelength region from 1000 to 
2300 nm at 1 nm resolution (1301 wavelengths). The 
author obtained prediction performance of R2 0.88 
for water content and R2 = 0.76 for fat content after 
the application of SavGol smoothing for the second 
derivative, which meant good prediction potential 
of the models. 

Trapani et al., (2017) used a NIR spectrometer 
based on a discrete filter system for the measure-
ment of the moisture, oil and sugar contents of 
olive fruits. NIR spectra were recorded from 1400 to 
2400 nm at 19 selected wavelengths. In PLS models 
the r2 in calibration ranged between 0.90 and 0.93.

A substantial reduction in the number of wave-
lengths used, which would provide more robust 
models, is a possible solution, and is studied in the 
present work. 

The RPD has been commonly used to compare 
the performance across different regression models 
by scaling the standard error of prediction (SEP) 
with any statistical index which represents the spread 
of the population, usually the standard deviation 
(SD). This ratio removes the effects of the range of 
the property to be estimated. Bellon-Maurel et al., 
(2010) proposed the use of the interquartile distance 
(IQ25-75 = Q75 – Q25) as an alternative to the SD when 
assumptions about normal distributions were not 
fulfilled. Such a ratio is called the “ratio of perfor-
mance to interquartile range” (RPIQ) and was used 
throughout this work.

The analysis of NIR spectral data usually 
involves the management of hundreds of variables 
corresponding to the wavelengths studied, which 
are indeed highly correlated. In addition, the need 

for spectral pre-processing prior to the develop-
ment of regression models increases computational 
requirements. The present work is a study on the 
feasibility of estimating oil and water contents by 
more simple computational methods which focus on 
a few wavelengths instead of the whole spectrum. 
The identification of the wavelengths of interest 
was performed by the method proposed by Roger 
et al., (2011) for variable selection called CovSel 
(Covariance Selection). CovSel aims at classifying 
the most useful variables of X (data matrix) in the 
decreasing order of interest. The most useful vari-
able is selected at each step. Covsel presents the 
advantage of maximizing the covariance between X 
and Y (matrix of properties to be estimated) rather 
than the correlation. For two variables with the same 
correlation with Y, the one with the highest covari-
ance is chosen. Then the data are orthogonally pro-
jected onto this selected variable which removes the 
information that is correlated to it. As neighboring 
variables in NIR spectra are highly correlated, this 
projection drastically decreases the variance of the 
variables adjacent to the selected one. Thus, the 
identification of the next variable in the following 
step will not take into account such adjacent vari-
ables. The consequence is that the variables showing 
high variance play a prominent role in the regression 
model. CovSel also deals with Y containing multi-
ple responses and carries out the variable selection 
on the basis of their global covariance with all the 
properties to be predicted. 

Roger et al., (2011) successfully implemented 
CovSel to data analysis, regression and discrimi-
nation. For the regression case, NIR spectra from 
corn samples were analyzed. The moisture, oil, 
protein and starch contents of the samples were 
taken as the Y multi-response. CovSel was applied 
to the calibration set and least square linear regres-
sions were then calculated, using the variables in the 
order previously obtained. The optimal models for 
each response included 11, 12 and 13 wavelengths. 
The application of the models to the validation set 
achieved R2 values of 0.997, 0.903, 0.908, and 0.877 
for each response, respectively.

The present work aims at evaluating the feasibil-
ity of the estimation of oil content (% fresh mat-
ter and % dry matter) and water content (% fresh 
matter) from intact olive fruits with simplified pro-
cedures using a reduced number of singular wave-
lengths in the devoted models.

For assuring robustness in the development of 
estimation models, it is a major requirement that 
most of the expected sample variability is taken into 
account. In the present work, the main criterion 
for achieving maximum variability in oil and water 
content and spectral data was based on the differ-
ent photosynthetic capacities derived from differ-
ences in the quantity of intercepted radiation by the 
foliar surface according to position in the tree and 
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to hedgerow orientation. Such differences involve 
a variation in flowering, fruit number, fruit size, 
ripening, synthesis and accumulation of oil in the 
fruit (Gómez-del-Campo et al., 2009; Connor et al., 
2009). In order to enhance the variability, another 
main source was included, such as geographical 
location of orchards.

This study is focused on identifying specific wave-
lengths and wavelength ratios which are useful as an 
alternative to the traditional use of a huge amount 
of spectral data in NIR applications in olive fruits, 
and could contribute to the future development of 
multi-wavelength devices which are applicable in the 
oil industry.

2. MATERIALS AND METHODS

2.1. Samples

Olive fruit samples with different oil contents 
of  the cv. Arbequina were harvested in different 
layers of  three different orchards in Spain, near 
Puebla de Montalban, Toledo (39°N) and Pedro 
Abad, Córdoba (38ºN), Écija, Sevilla (37ºN). In 
the first olive orchard hedgerows were planted 
E–W and spaced 4 x 2 m (1250 trees/ha). The 
hedgerow was 2 m high and 1 m wide. In the sec-
ond orchard, the hedgerows were E-W oriented 
with spacing of  4 x 1.35 m (1922 trees/ha), hedge-
row height was 1.5 m, with 1 m width. The third 
orchard was N-S oriented and spaced at 4 x 1.35 m; 
hedgerow height was 1.3 m, and the width was 1 m 
(1922 trees/ha). 

In each orchard, the canopy was divided into 
several horizontal stratums with 40 and 60 cm 
width  according to canopy development, with 
height above 280 and 220 cm, respectively (Figure 1). 

One kilogram of olive fruits was harvested manually 
from each stratum. 

The whole set comprised a total of 95 samples, 
corresponding to 95 different stratums. Each sample 
contained about one hundred fruits. Samples were 
randomly split into two sets: a calibration set with 
80 samples for model development, and a test set 
with 15 samples for external validation. 

In summary, the olive fruits used for the develop-
ment of the estimation model came from different 
orchards, different heights and different orientations 
in order to enhance variability in maturity stages, 
and consequently, in oil and water contents, and 
variability in the spectral data. Table 1 summarizes 
the statistics for both sets. 

2.2. Water and oil content determination

Fresh samples of intact olive fruits were weighed 
before and after drying for 48 h in a forced-air oven 
at 105 °C to determine moisture content. Olive mois-
ture was gravimetrically determined and expressed 
as percentage of fresh weight (AENOR, 1973).

The oil content was measured from dried olive 
fruits using an NMR Minispec NMS100 (Bruker 
Optik GmbH) since the suitability of this analyti-
cal technique in terms of accuracy and precision 
has been proven through comparison to the offi-
cial method based on Soxhlet extraction (García 
Sánchez et al., 2005). Values were expressed as per-
centage of fresh weight.

2.3. NIR measurements

NIR measurements of the olive fruits were taken 
using a FOSS NIRSystems 5000 in the 1100-2500 nm 
range at 2 nm resolution (total of 700 wavelengths) 

Figure 1.  Left: Layer delimitation in olive hedgerow for sample harvesting. Upper-right: Variability in fruit skin color of olives 
according to different maturity stages. Bottom-right: Sample holder filled with one sample of fresh olives containing 100 fruits.
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in reflectance mode, and then transformed to absor-
bance values as log (1/R). 

In order to eliminate the influence of tempera-
ture, all samples were stabilized at room temperature 
prior to spectra acquisition. For each sample, about 
one hundred olive fruits were placed in the sample 
holder (Figure 1). Olive fruits within each canopy 
layer were expected to present natural differences 
in chemical composition and visibly showed het-
erogeneity in shape and size (Figure 1). Thus, NIR 
spectra were acquired from two replicate samples of 
olive fruits. Then the spectral data were averaged so 
as to obtain a more representative NIR spectrum of 
the layer.

2.4. NIR model development

The identification of  outliers was carried out 
using univariate and multivariate approaches 
for analytical (oil and water content) and spec-
tral data, respectively. The univariate approach 
was intended to identify data outliers among the 
oil content determinations by NMR analyses. 
Although univariate outliers are usually a result 
of  an experimental error, they could also be a 
result of  a phenotypical variability. In the present 
work, box-plots were used with lines at the lower 
quartile, middle, and upper quartile values. The 
whiskers had a length equal to 1.5 times the inter-
quartile range (Dytham, 2010) and those data 
beyond the ends of  the whiskers were considered 
outliers. 

PCA was performed on raw spectra. Hotelling’s 
T2 was computed in order to reveal unusual varia-
tion inside the PCA model, that is, to detect vari-
ations in the PC scores which are higher than 
statistically expected when the dispersion in each PC 
is taken into account. Then, PLSR was performed 
and those samples that either provided a prediction 
error higher than three times the bias corrected SEP 
or presented Hotelling’s T2 value higher than the 

corresponding limit (95% confidence interval) were 
discarded.

The univariate analysis of oil and water content 
data, spectral pre-processing, PLSR and CovSel 
were performed using MATLAB Release 2016a, 
The MathWorks, Inc.

Estimation models with the whole spectra. 
Different spectral pre-processing techniques were 
evaluated, including no pre-treatment of the data. 
The most common techniques were applied, such as 
MSC, SavGol smoothing and derivation algorithm 
with a window of 21 wavelengths, third-degree poly-
nomial and first derivative (SavGol21_3_1); SavGol 
with a window of 21 wavelengths, third-degree poly-
nomial and second derivative (SavGol21_3_2), SNV, 
and DT. In order to combine the reduction of both 
multiplicative and additive effects due to scattering, 
SavGol21_3_2 with SNV; and DT with SNV were also 
applied.

PLS regressions were developed in order to gen-
erate different estimation models of oil content (% 
fresh matter) and water content (% fresh matter) 
with the calibration sets of fresh olive fruits. The 
selection of the number of latent variables was car-
ried out according to the evolution of the standard 
error of calibration (SEC) and the standard error of 
cross-validation (SECV). The spectra of the test set 
as well as the corresponding oil and water contents 
were scaled with respect to the respective means of 
the calibration set. 

The performance across the different regression 
models was compared using the R2, r2, SEC, SEP 
and RPIQ. Assumptions on normal distributions 
are not considered in the present work.

Estimation models with singular wavelengths. 
Preliminary identification of potential singular 
wavelengths was made by computing the inter-
quartile distance Q25-75 of each wavelength in the 
NIR spectra without pre-treatment. Wavelengths 
showing high dispersion were compared to those 
showing high b-coefficients (absolute value) in the 

Table 1.  Summary of the statistics for oil content (% fresh matter) and  
water content (% fresh matter) of the calibration and test sets.

STATISTICS

Oil content (% fresh matter)
Whole set split into:

Water content (% fresh matter)
Whole set split into:

Calibration set
N = 80

Test set
N = 15

Calibration set
N = 77

Test set
N = 15

Minimum 11.08 12.36 47.74 50.55

Maximum 25.46 23.37 66.21 63.97

Range 14.38 11.01 18.47 13.42

Interquartile distance 4.28 4.58 5.20 4.08

Mean 17.45 17.75 58.09 58.34

Median 16.81 17.37 57.92 58.39

STD 3.18 3.09 4.01 3.26
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corresponding PLSR model. In addition, the evolu-
tion of the peak’s height in relation to increasing oil 
content was monitored in order to find potentially 
useful relationships. 

Wavelength selection was carried out accord-
ing to the methodology explained by Roger et al., 
(2011). Three approaches were defined: a) selection 
of independent wavelengths for each response; b) 
selection of wavelengths on the basis of their global 
covariance with several responses; c) selection of 
wavelength indexes for common use.

For the first approach, CovSel was run on the 
NIR spectra without pre-treatment (X matrix) and 
the oil content vectors (wet basis) and the water con-
tent (wet basis) vector independently, with a limit 
of 15 steps. This yielded a selection of 15 ordered 
wavelengths for each response. Then, variables were 
introduced stepwise in classic mono-response least 
square models. Up to 15 models were built with an 
increasing number of variables in the order previ-
ously obtained (from one variable up to 15). A leave-
one-out cross-validation produced a curve of SEC 
and a curve of SECV that lead to the choice of the 
final model. 

For the second approach, CovSel was run on 
the X matrix and the Y matrix containing all the 
responses (oil and water content), with a limit of 15 
steps. This yielded a selection of 15 ordered wave-
lengths as well. CovSel was run a second time for 
each parameter independently to produce three sort-
ings of the 15 selected variables. A series of 15 least 
square regression models were then calculated, one 
series for each response. The optimal models were 
then chosen by studying the evolution of the SECV. 

For the third approach, indexes were computed 
as combinations of relative peak heights. CovSel was 
applied to identify the indexes with the best capacity 
for estimating oil content on a fresh weight basis (% 
fresh matter). The selected indexes were used to gen-
erate models to estimate water content (% fresh mat-
ter). In doing so, the wavelengths required would be 
restricted to a low optimal number. 

All the selected models were applied to the vali-
dation set. Performance indicators were R2, SEP, 
and RPIQ.

3. RESULTS AND DISCUSSION 

The near-infrared absorbance spectra showed 
the typical absorbance bands reviewed by Shenk 
et al., (2001) and by Aparicio and Hardwood (2000). 
Figure 2a provides an illustrative example of a spec-
trum from a fresh olive fruit. For band compari-
son, examples of a spectrum from Arbequina extra 
virgin olive oil and from water are also provided 
(Figure 2b and c). The near infrared region consists 
primarily of first, second, and third overtones from 
700 to 1900 nm (Osborne et al., 1993). From 1900 
to 2500 nm, the absorption information primarily 

consists of combination bands of one or more over-
tone bands. Some of the most important CH2 bands 
from second overtones in oil were found as four 
paired peaks around 1720, 1760, 2300, and 2350 
nm; peaks at around 1200 nm and 1400 were also 
found (Figure 2a, b, y c). Strong OH bands for water 
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Figure 2.  Examples of absorbance NIR spectra: a) fresh 
olive fruit; b) Arbequina extra virgin olive oil; c) water. 
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were found from its first overtone at around 1440, 
and from a first band combination at about 1930 
nm (Figure 2a and c). Figure 2a shows the notice-
able accordance between the peaks comprising the 
spectra from olive fruits and those comprising the 
spectra from water and olive oil. Such a pattern 
was consistent for the whole set of raw absorbance 
spectra from the fresh olives analyzed in the present 
work (Figure 3a), which are dominated by the broad 
bands corresponding to water.

As illustrated in Figure 3a, the effect of scatter-
ing was also remarkable, along with the additive and 
multiplicative effects, and curved baselines. Spectra 
are colored and range from light green to dark 
green, roughly encompassing the increase in oil con-
tent, mainly at the regions related to oil absorbance 
bands. Color degradation highlights a trend in the 
dispersion of the spectra as samples with increasing 
oil content tend to show higher absorbance values 
throughout the range of wavelengths. A noticeable 
pattern within the wavelength region ranging from 
1700 to 1800 nm is illustrated in detail in Figure 3a. 
Such a region is associated with oil absorbance 
bands, and contains a doublet with a local maximum 
at around 1724 and 1760 nm. For low-oil content 
samples (lighter green), the absorbance at 1724 nm 
was lower than the absorbance at 1760 nm. As oil 
content increased (darker green) the absorbance at 
1724 nm became higher than that at 1760 nm. This 
evolution was exploited, as shown below.

For chemical and spectral data, the identification 
of the outliers was carried out by univariate and 
multivariate approaches, respectively. The univari-
ate approach did not identify any outliers among the 
oil and water contents. The multivariate approach 
did not identify any outlier among the spectra. 
However, according to the prediction errors (results 
not shown), three outliers were found in the calibra-
tion set for water content estimation with the PLSR 
model. The outliers were deleted prior to the devel-
opment of the definitive corresponding models. 

Table 1 summarizes the statistics for calibration 
and validation final sets, which showed similar val-
ues. The broad range characterizes each property to 
be estimated, and mean and median were compa-
rable values. According to this, calibration and vali-
dation sets were balanced in number of samples and 
were representative of the expected variability.

3.1. Estimation models with the whole spectra

PLSR models were developed using the 700 
wavelengths of the NIR spectra. The selection of 
latent variables was carried out according to the 
performance achieved during the internal validation 
through the cross-validation method. An increas-
ing number of latent variables assured higher R2 
and lower SEC; and usually those values reached 
stabilization. However, with increasing model com-
plexity the overfitting was induced, as revealed by 
the divergence of SEC and SECV. The number of 
LV was selected according to the beginning of this 
divergence (results not shown). 

The parameters which characterize the perfor-
mance of the different PLSR models are summa-
rized in Table 2. For oil content (% fresh matter) 
the use of raw spectra, i.e. without applying any 
pre-treatment, provided an excellent performance 
for the calibration set. The percentages of variance 
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a) Absorbance NIR spectra of the calibration set;  
b) b-coefficients of the PLSR model with 6 latent variables;  

c) interquartile distance Q25-75. 
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captured by the model with six latent variables were 
99.63% for the spectra and 92.75% for the oil con-
tent. Performance decreased for the external valida-
tion as r2 was 0.85, although the RPIQt value of 3.9 
was a satisfactory result.

Figure 3b shows the b-coefficients of the corre-
sponding model. The regions related to both com-
ponents, oil and water, presented a local maximum 
with comparable values. The structure of the olive 
tissue and the distribution of the oil content and the 
water content within such cells and tissues, as well as 
their relative proportions, were expected to affect the 
spectral response. Water is the most important com-
ponent of fresh olive fruit (values between 48-66 % 
fresh matter) and oil is the second component (11-25 
% fresh matter), and those fruits with higher oil con-
tent present less water in them (Gómez-del-Campo 
et al., 2009). Hence, the absorbance of water would 
reveal information on the oil content.

The classic pre-treatments provided dissimi-
lar estimation capacity among them (Table 2), 
even showing performances comparable to raw 
data. The pre-treatments aimed at reducing mul-
tiplicative effects such as MSC and SNV showed 
higher r2 and RPIQt values than the pre-treatments 
aimed at reducing additive effects such as DT and 
SavGol21_3_2; whereas SavGol21_3_1 and the combined 
pre-treatments SavGol21_3_2 + SNV and DT + SNV 
showed the highest r2 and RPDt values. The num-
ber of latent variables ranged from 2 to 7; r2 ranged 
from 0.83 to 0.95; and RPIQt ranged from 3.9 to 6.8. 

The estimation of the water content (% fresh 
matter) from the raw data provided excellent results 
for the test set, with r2 of 0.9 and RPIQt of 3.6. The 
application of all the pre-treatments increased the 
predictive capacity with r2 ranging from 0.92 to 0.97 
and RPIQt ranging from 4.2 to 5.7, which mean an 
excellent predictive capacity. The best results were 

found for the combination of DT + SNV. Latent 
variables ranged from 4 to 8. Performance indica-
tors were consistently higher than those of oil con-
tent estimation. This is in accordance with previous 
works referred to in the Introduction section such as 
Salguero-Chaparro et al., (2013). The reason could 
be attributed to the preponderance of the absor-
bance peaks related to water. 

These variable results obtained when applying 
spectral pre-treatments and the fact that they did 
not always show better capacity than the raw data, 
suggest that the dispersion of the absorbance that 
contains useful information on oil content could 
have been partially removed. Moreover, encourag-
ing results have been obtained by PLSR models 
from the non-pre-treated spectra.

As in classic NIR spectroscopy applications, 
the previous analysis used a spectral data matrix 
comprising a large number of variables, i.e. 700. 
Despite the PLSR models providing a simple vector 
with the b-coefficients of the regression to be used 
for estimation, the need for managing hundreds of 
variables remained. Therefore, a subsequent study 
was focused on identifying a limited number of 
wavelengths or combination of wavelengths which 
provided acceptable estimation capacity. Under a 
practical point of view, the analysis was carried out 
on raw spectral data.

3.2. Estimation models with singular wavelengths

A preliminary identification of potential singular 
wavelengths was carried out by computing the inter-
quartile distance for each wavelength in the NIR 
spectra without pre-treatment (Figure 3c). In con-
trast to fluid-like samples, the microstructure het-
erogeneity of solid-like samples such as olive fruits 
enhances the dispersion of the absorbance values 

Table 2.  Summary of performance results from the PLSR models for the prediction of oil content (% fresh matter)  
and water content (% fresh matter) obtained after different pre-processing techniques on  

NIR spectra (1100 nm to 2500 nm) from fresh olive fruits. 

Pre-processing 
techniques

Latent 
variables

Oil content (% fresh matter)

Latent 
variables

Water content (% fresh matter)

Calibration set  
(N = 80)

Test set  
(N = 15)

Calibration set  
(N = 77)

Test set  
(N = 15)

R2 SEC RPIQc r2 SEP RPIQt R2 SEC RPIQc r2 SEP RPIQ t

No pre-treatment 6 0.93 0.85 5.0 0.85 1.16 3.9 7 0.95 0.93 5.6 0.9 1.13 3.6

DT 2 0.85 1.21 3.5 0.83 1.22 3.8 8 0.96 0.83 6.3 0.95 0.73 5.6

MSC 7 0.94 0.75 5.7 0.9 0.98 4.7 4 0.94 0.97 5.4 0.92 0.97 4.2

SNV 7 0.94 0.75 5.7 0.9 0.98 4.7 4 0.94 0.97 5.4 0.92 0.97 4.2

SavGol21_3_1 6 0.95 0.72 5.9 0.93 0.83 5.5 5 0.94 0.98 5.3 0.95 0.75 5.4

SavGol21_3_2 3 0.85 1.21 3.5 0.85 1.17 3.9 6 0.96 0.82 6.3 0.96 0.72 5.7

SavGol21_3_2 + 
SNV

5 0.92 0.91 4.7 0.95 0.67 6.8 4 0.94 1.02 5.1 0.95 0.79 5.2

DT + SNV 7 0.96 0.67 6.4 0.93 0.81 5.7 7 0.95 0.85 6.1 0.97 0.57 7.2

https://doi.org/10.3989/gya.0457181


From NIR spectra to singular wavelengths for the estimation of the oil and water contents in olive fruits • 9

Grasas Aceites 69 (4), October–December 2018, e278. ISSN-L: 0017-3495 https://doi.org/10.3989/gya.0457181

due to scattering. However, the spectral features that 
are related to the oil content were expected to show 
stronger deviation.

As expected, those wavelengths showing a local 
maximum in Figure 3c were in accordance with 
the main peaks in the spectrum of the olive oil 
illustrated in Figure 2a, as expected. The highest 
dispersion was found for 1392 nm, which could 
be derived from the curved baseline. Similarities 
were also found with the wavelengths showing high 
b-coefficients (absolute value) in the corresponding 
PLSR model (Figure 3b). The interquartile distance 
depicted in Figure 3c illustrated the higher disper-
sion at 1724 nm in comparison to 1760 nm, which 
could be an indicator of a different behavior related 
to variations in oil content. This result supported 
the evolution of the relative peak heights shown 
in Figure 3a for this doublet. Therefore, this peak 
height ratio was revealed as potentially useful for oil 
content estimation. 

In order to consistently identify the proper wave-
lengths, the method of variable selection CovSel, devel-
oped by Roger et al., (2011), was applied to the matrix 
of absorbance spectra without any pre-treatment. 

Firstly, the selection of wavelengths was carried 
out independently for each property. According to 
Roger et al., (2011) in the iterative process of vari-
able selection there is a compromise between the X 
variance, the Y variance and their correlation. When 
X variables are dependent, and a relation between X 
and Y exists, the evolution of the variances explained 
by Covsel (expressed in percentage of the whole vari-
ances of X and Y) presents a rapid increase at the 
beginning of the process which corresponds to the 
selection of the most important variables. At increas-
ing iterative steps, the increase in the explained vari-
ances slows down. This behavior is observed for 
the oil in Figure 4a, and for water content (results 
not shown). It is worth noting that the first selected 
variable accounted for 62% of the X variance and 
the 72% of the Y variance. The selection process 
included up to 15 variables, with explained variance 
of X evolving up to 100%. The number of variables 
finally selected was set according to the divergence 
of the SEC and SECV and the evolution of R2 
computed in the linear least square models, which 
were built by introducing the variables in a stepwise 
mode. Six wavelengths finally entered the model for 
the estimation of oil content 6 (Figure 4b). For water 
content 5 wavelengths were selected.

Table 3 summarizes the selected wavelengths and 
the parameters that characterize the performance 
for the different models. Three wavelengths were 
common to both properties: 1390, 1630 and 1724 
nm. The last one was constantly selected in the first 
step. Excellent performance was obtained for the 
external validation, with r2 of 0.9 and RPIQt of 4.8 
for oil content (% fresh matter); and r2 of 0.92 and 
RPIQt of 4.3 for water content (% fresh matter). 

These estimation capabilities for oil and water 
content on a fresh weight basis were higher than 
those obtained by the PLSR model with 700 wave-
lengths combined in 6 latent variables, which is an 
encouraging result.

In Figure 5 the selected wavelengths which are 
specific for the estimation of oil content (% fresh 
matter) are identified by vertical lines superimposed 
onto the average spectrum. 99.92% of the X vari-
ance and 92.5% of the Y variance are captured by 
these six wavelengths. The most important infor-
mation was provided by the dispersion at 1724 nm, 
related to oil absorbance. Secondly, the dispersion 
at 1390 nm, where a change in slope appeared in the 
peak related to water which could be ascribed to the 
peak observed in the oil sample (Figure 2b). The 
third variable, 1940 nm, was also related to water. 
Then, information on oil absorbance at 1206 nm 
was selected. Finally, 1630 nm and 1464 nm were 
selected. Most of the selected wavelengths were the 
same (or slightly shifted) as the local maximum of 
the b-coefficients computed by PLSR.
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When CovSel was applied to multi-response 
regression, the selected variables included those of 
the specific selection, and a similar hierarchy was 
obtained providing comparable results (not shown).

The third approach was focused on the selection 
of common wavelength indexes which are useful for 
estimating both responses. In view of the spectral 
pattern observed with increasing oil content in the 

doublet within the region ranging from 1700 to 1800 
nm, and in view of the regular selection of absor-
bance at 1724 nm, several indexes were computed 
as the combination of the absorbance at different 
wavelengths. 

The two main indexes were: absorbance at 
1764  nm divided by absorbance at 1724 nm (I1 = 
A1760/A1724); and A1724 minus A1760 (I2 = A1724 - A1760). 
Secondary indexes were computed by dividing the 
absorbance at each selected wavelength by I1. Values 
of I1 were greater than the unit for samples with 
low oil content; and decreased towards values lower 
than the unit for samples with increasing oil content 
as peak height at 1724 evolved to values higher than 
peak height at 1760 nm (Figure 6a). Thus, for sam-
ples with lower oil content secondary indexes com-
prised a low numerator and a denominator higher 
than the unit, which yielded a much lower value. In 
contrast, for samples with higher oil content sec-
ondary indexes comprised a high numerator and 
a denominator lower than the unit, which yielded 
a much higher value. According to this, secondary 
indexes would potentially spread the dispersion at 
each wavelength, which could enhance the covari-
ance with the responses and thus, improve the esti-
mation capability. Figure 6b illustrates the effect of 
the computation of the index A1724/I1. In Figure 6b 
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Figure 5.  Wavelengths selected by the specific CovSel 
procedure for oil content estimation identified by vertical lines 

superimposed onto the average spectrum from NIR spectra 
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order of selection. 

Table 3.  Summary of the selected wavelengths by CovSel for the different estimation models and parameters that characterize 
the performance of the models. Ordering in columns corresponds to order of selection. 

Specific Wavelength Selection

Num. 
wavelengths Wavelengths

Calibration set
(Noil = 80) (Nwater = 77)

Test set 
(N = 15)

R2 SEC RPIQ c r2 SEP RPIQ t

Oil content
(% fresh matter)

6 1724 0.91 0.95 4.5 0.9 0.94 4.9

1390

1940

1206

1630

1464

Water content
(% fresh matter)

5 1724 0.91 1.17 4.4 0.92 0.95 4.3

1390

1940

1630

1434

Common 
Indexes

Oil content
(% fresh matter)

3 A1724/(A1760/
A1724)

(A1760/A1724)
A1206/(A1760/

A1724)

0.88 1.1 3.9 0.88 1.04 4.4

Water content  
(% fresh matter)

0.88 1.37 3.8 0.84 1.3 3.1
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for low oil content, the blue dots (values of A1724) 
are above their corresponding red dots (index). For 
intermediate content, blue and red dots are closer; 
and for higher oil content the blue dots appear 
below the red dots. The slope increased from 0.0114 
to 0.0135; and the values of R2 increased from 

0.71 to 0.79. Analogous behavior is observed for the 
index A1206/I1 in Figure 6c. The slope increased from 
0.006 to 0.0073; and the values of R2 increased from 
0.48 to 0.63.

The selection of the best indexes for the estimation 
of oil and water content (% fresh matter) was carried 
out by following the previously described procedure. 
Three indexes were selected, which included absor-
bance at three wavelengths, i.e. 1206 nm, 1724 nm, 
and 1760 nm. For the test set r2 achieved 0.88 and 
RPIQt was 4.4. Then, the same indexes were used to 
estimate water content (% fresh matter). This solu-
tion provided a compromise between the estimation 
performance and the use of a minimum number 
of singular wavelengths. The r2 value was 0.84 and 
the RPIQt was 3.1. These values were comparable 
to those obtained with PLSR, although in this case 
only three wavelengths were required (Figure 7).

4. CONCLUSIONS

The NIR spectra from fresh olive fruits were 
affected by shifts in baseline and non-linearities 
mainly as a result of light scattering, which induced 
additive and multiplicative effects. In the present 
work, classic spectral pre-treatments were applied 
to diminish such effects prior to the development 
of PLSR models. However, they do not always 
guarantee successful results. Some pre-treatments 
yielded poorer estimation capabilities for oil content 
(%  fresh matter) than that provided from the raw 
spectra (lower r2 and lower RPIQt). Therefore, part 
of the dispersion containing useful information was 
reduced by the pre-treatment. Despite the scattering 
effects manifested throughout the raw spectra, sev-
eral wavelengths showed a wider dispersion which 
was related to oil and water content. Thus, raw data 
are reliable for obtaining estimation models. 

Acceptable performances were obtained when 
using raw spectral data from 1100 nm to 2500 nm at 
2 nm resolution (total of 700 wavelengths). The esti-
mation of oil content in external validation achieved 
an r2 value of 0.85 and RPIQt value of 3.9. As for 
water content r2 was 0.9 and RPIQt was 3.6. The 
estimation of the water content consistently showed 
better results when compared to oil estimation. 

For both parameters, oil and water content, 
the estimation models included absorbance bands 
assigned to both compounds. Such a result suggests 
that their proportion in fresh tissue affects the pro-
portion of their corresponding spectral responses. 
Thus, useful information for the quantification of 
each parameter is reciprocally contained in their 
corresponding absorbance bands. 

The spectral data bases that are typically used for 
the estimation of parameters from the NIR spectra 
of olive fruits contain a huge number of variables. 
Moreover, PLSR models include several LV which 
are combinations of the whole range of variables. 

Figure 6.  Oil content (% fresh matter) versus absorbance 
values (u.a.): a) The green series corresponds to index 1 

values, I1 = A1760/A1724; b) The blue series corresponds to a raw 
absorbance value at 1724 nm (A1724); the red series corresponds 

to values computed as A1724/(A1760/A1724); b) The blue series 
corresponds to a raw absorbance value at 1206 nm (A1206); the 

red series corresponds to values computed as A1206/(A1760/A1724). 
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The amount of data managed can be significantly 
simplified by the application of a specialized selec-
tion of variables, without a reduction in estimation 
capacity. The CovSel method was applied in the 
present work which involved a reduction from 700 
variables to 6 and to 5 variables for oil content and 
water content, respectively. Such variables were hier-
archically selected according to their covariance with 
such contents. Estimation performance overcame 
that obtained with PLSR models without variable 
selection. For the test set the r2 reached values of 0.9 
and 0.92 for oil and water content, respectively.

Required wavelengths can be restricted to an 
even lower practical number. The evolution of the 
relative peak heights found for absorbance at 1724 
nm and at 1760 nm can be exploited. The indexes 
were computed as ratios of their absorbance. The 
indexes spread the dispersion at each wavelength, 
which enhanced the covariance with the responses 
and thus, improved the estimation capability. Three 
indexes were selected, which included 1206 nm, 1724 
nm, and 1760 nm. For oil content r2 reached a value 

of 0.88 and RPIQt was 4.4. For water content the r2 
value was 0.84 and the RPIQt was 3.1. Estimation 
performance can be comparable to that obtained 
with PLSR with 700 variables. It is noticeable that 
in this case only three wavelengths were required.

These are encouraging results since straightfor-
ward and robust methodologies for fruit inspection 
are pursued by the olive industry. The identification 
and evaluation of a reduced number of singular 
wavelengths is a step towards the development of 
multi-wavelength devices, such as cameras, which 
could be used in field, industrial and laboratory 
environments. 
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