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SUMMARY: The consumption of fermented vegetables is widespread throughout the world and represents an 
important component of the human diet with considerable contribution to the food supply for a world popula-
tion in continuous growth. Many of the fermented vegetables share a general process which requires salting and 
acidification steps. Among the microorganisms responsible for fermentation, lactic acid bacteria are the most 
relevant with important organoleptic, quality and safety benefits. This review deals with the microbial ecology 
of fermented vegetables focusing on the biodiversity of lactic acid bacteria, the most important molecular tech-
niques used for their identification and genotyping, their importance for the formation of biofilms as well as 
their use as starter cultures for obtaining high-quality and safe vegetable products.
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RESUMEN: Papel de las bacterias del ácido láctico en verduras fermentadas. El consumo de vegetales fermenta-
dos está muy extendido en el mundo y representa un componente importante de la dieta humana con un apoyo 
considerable a la cadena alimentaria para una población mundial en continuo crecimiento. Muchos de los vege-
tales fermentados comparten un proceso general, que requiere una puesta en salmuera y acidificación. Entre los 
microorganismos responsables de la fermentación, las bacterias del ácido láctico son las más relevantes con una 
importante influencia sobre aspectos organolépticos, de calidad y seguridad del producto final. Esta revisión 
trata sobre la ecología microbiana de los vegetales fermentados, prestando especial atención a la biodiversidad 
de las bacterias del ácido láctico, las técnicas moleculares más importantes utilizadas para su identificación y 
genotipado, su importancia para la formación de biofilms y su uso como cultivos iniciadores multifuncionales 
para la obtención de productos vegetales de alta calidad y seguridad.
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1. INTRODUCTION

Fermented vegetables (cucumber, kimchi, sau-
erkraut, capers, carrots, table olives, etc.) play an 
important role in the human diet as a source of 
water-soluble vitamins, dietary fiber, phytosterols, 
phytochemicals and minerals (Gebbers, 2007). They 
also represent fundamental support for the feeding 
of a growing population. Fermentation is consid-
ered one of the oldest and cheapest methods used in 
food technology for food preservation. In addition, 
fermentation confers favorable effects to vegetables 
by improving the organoleptic characteristics of the 
final product (taste, color, texture, etc.), eliminates 
anti-nutritional components, prolongs shelf-life 
and increases the safety of the final products. The 
first reference of fermented vegetables was found in 
China during the construction of the Great Wall in 
III B.C. and constituted the basis of the workers’ 
diet (Andersson, Daeschel and Eriksson, 1988).

Fermented vegetables can be considered both 
the edible part of the fruits (seeds and pulp) and 
other parts of the plant (leaves and roots). Many 
fermented vegetables share a common elaboration 
process which requires the use of salt and acidifi-
cation by microorganisms (Figure 1). Sometimes a 
pre-step such as NaOH treatment, water washing, 
scalding, etc. is required, after harvesting the fruit. 
Pickles are prepared under three basic types of con-
ditions: dry-salted, immersed in brine or non-salted 
cover solutions, where the fermentation takes places 

during storage (Montet et al., 2014). The develop-
ment of certain autochthonous microorganisms 
present in the raw material, mainly lactic acid bac-
teria (LAB) and yeasts, are favored by the manu-
facturing of fermented vegetables (Di Cagno et al., 
2013; Arroyo-López, et al., 2012b). The process of 
lactic fermentation consists of the conversion of 
sugars, mainly glucose, into lactic acid, which pro-
duces acidification at pH values below 4.6 units. 
This acidification inhibits the growth of undesirable 
spoilage and pathogenic microorganisms that can 
generate risks for public health.

2. �THE MICROBIAL ECOLOGY OF 
FERMENTED VEGETABLES

The microorganisms present during vegetable 
fermentation are very diverse and may considerably 
affect the quality and safety of the final product. 
The microbiota initially present in the processes of 
lactic fermentation comes mainly from the fruit, 
although other elements such as brines, ingredients 
used and the industry’s own environment influence 
its composition. The microbiota that colonizes the 
surface, and even the interior of the fresh fruit, is 
varied and depends on factors such as fruit matu-
rity, climate and agricultural practices (Samish 
et al., 1963; Mattos et al., 2005). Mesophilic aerobic 
microorganisms on the surface of fresh pickles and 
cabbage can reach population levels of up to 5 log10 
CFU/mL (Pérez-Díaz et  al., 2015). This microbial 

Figure 1.  Flowchart of diverse fermented vegetable elaboration processes.
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diversity is drastically reduced as the fermenta-
tion process evolves due to changes in the chemical 
conditions, mainly pH, acidity and salt concentra-
tion. A selection is made between the best adapted 
microbial groups and among them they compete 
for the nutrients and the dominance of the process. 
Enterobacteria, LAB and other groups of bacteria 
and yeasts can be active during the early stages of 
fermentation, depending on factors such as tem-
perature, dissolved oxygen and the concentration of 
salts used in the brines. Subsequently, there is domi-
nance by LAB (mainly Lactobacillus, Pediococcus, 
Enterococcus and Leuconostoc genera) throughout 
fermentation.

LAB are characterized by transforming fer-
mentable material, mainly glucose and fructose, 
into organic acids through fermentation. The ini-
tial steps of vegetable fermentations are usually 
carried out by heterofermentative microorgan-
isms with the production of lactic and acetic acids 
which make an important contribution to the fla-
vor and aroma of the final product (Breidt et  al., 
2013b). Then, they are replaced by the more acid-
tolerant homofermentative microorganisms due to 
their capacity to produce lactic acid which induces 
a greater decrease in the pH but that inhibits the 
development of other microbial groups (Montet 
et  al., 2014). These pH changes, together with the 
concentration of salt, are responsible for obtaining 
stable and safe fermented vegetables. Lactic acid 
has advantageous preservative properties, which are 
responsible for fermented products having a longer 
shelf-life than their non-fermented counterparts. 
Also, other metabolites generated by LAB such as 
esters or bacteriocins contribute to the improve-
ment of the organoleptic properties (acid and sour 
flavor) of the vegetable products produced by these 
processes. Fermentations carried out by LAB have 
also permitted the production of a large variety of 
foods with different aromas, flavors, and consisten-
cies (Lücke, 1996).

In addition to the presence of LAB, yeast popu-
lations can also coexist during vegetable fermenta-
tion. In fact, they predominate in certain types of 
elaborations, such as directly brined olives (natu-
ral green and black) where the Candida, Pichia, 
Debaryomyces, and Saccharomyces genera are the 
most representative (Arroyo-López et  al., 2008; 
Botta and Cocolin, 2012). In the fermentation of 
gherkins, the genera Torulopsis, Brettanomyces, 
Zygosaccharomyces, Hansenula, Torulaspora, and 
Kloeckera also stand out (Etchells and Bell, 1950). 
Yeasts modulate the final organoleptic profile of 
the fermented product due to their capacity to pro-
duce volatile compounds associated with the devel-
opment of flavor and aroma (Arroyo-López, et al., 
2012b; Hernández et  al., 2007; Rodríguez-Gómez 
et al., 2010). However, yeasts can also be responsible 
for certain types of alterations. Excessive growth of 

fermentative yeasts (Saccharomyces cerevisiae and 
Wicherhanomyces anomalus) could trigger an active 
production of CO2, which damage the fruits with the 
formation of gas pockets or produce wiring in table 
olives (Vaughn et  al., 1972; Garrido-Fernández 
et al., 1997). Certain yeasts, such as Pichia mansh-
urica and Issatchenkia occidentalis, are associated 
with alterations in fermented vegetables due to their 
capacity to consume lactic acid and increase the pH 
of the product (Franco et al., 2012). Pichia kudria-
vzevii is considered the main yeast responsible for the 
production of bad odor and flavor in kimchi, as well 
as softening (Moon et al., 2014). Other fungi with 
pectinolytic capacity such as the genera Alternaria, 
Fusarium and Mucor, are responsible for the soften-
ing of pickles in brine (Costilow et al., 1980)

In addition to LAB and yeasts, which are typi-
cally found in vegetable fermentations, gram-nega-
tive bacteria of the genera Enterobacter, Citrobacter 
and Escherichia are generally present at the begin-
ning of fermentation. These microbial communities 
are inhibited because of lactic acid production by 
LAB, with a concomitant decrease in pH (Garrido-
Fernández et  al., 1997). If  the decrease in pH is 
not fast, Gram-negative bacteria can grow and pro-
duce CO2 and compromise the quality and safety 
of  the product leading to defects associated with 
the  fruit, forming gas-pockets on the surface or 
inside the fruit, (“alambrado”) in gherkins and table 
olives (Fleming et  al., 1975; Garrido-Fernández 
et al., 1997).

The presence of nutrients and a neutral or alka-
line pH during the first stage of vegetable fermen-
tation can contribute to the growth of Clostridium 
spp. These spoilage microorganisms can generate 
odors of decomposing organic matter or rancid but-
ter, symptoms of putrid and butyric fermentations 
(Gililland and Vaughn, 1943). They are anaerobic 
spore-forming bacteria capable of colonizing the 
bottom of the fermenters where the concentration 
of oxygen is null. Sometimes, undesired second-
ary fermentation can be initiated by propionic acid 
bacteria such as Propionibacterium spp., converting 
sugars or lactic acid into propionic acid and CO2, 
thus increasing the pH values (González-Cancho 
et  al., 1980). These conditions also enhance the 
growth of Clostridium species which, together with 
Propionibacterium, can promote the so-called “zapa-
tería” alteration, giving off  abnormal odors in table 
olives (Kawatomari and Vaughn, 1956; Plastourgos 
and Vaughn, 1957) or desirable aromas in sauerkraut 
(Babuchowski et  al., 1999). The resulting pH rise 
allows the growth of other microbes which are spoil-
age or pathogenic, compromising the safety of the 
product (Medina-Pradas and Arroyo-López, 2015). 
The presence of acetic acid bacteria and some strains 
of Lactobacillus spp. plays an important role in the 
onset of spoilage in fermented cucumbers by con-
verting lactic acid into acetic acid (Johanningsmeier 
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and McFeeters, 2013; Medina et  al., 2016a). The 
increase in pH favors the growth of other species 
of Propionibacterium and Pectinatus. Clostridium 
bifermentans and Enterobacter cloacae which can 
metabolize the lactic acid and generate butyric and 
propionic acids, respectively (Breidt et  al., 2013a; 
Franco and Pérez-Díaz, 2013), and are responsible 
for the aroma of cheese and manure characteristic 
in spoilt fermented pickles.

3. �BIODIVERSITY OF LAB IN FERMENTED 
VEGETABLES

The diversity of LAB species present in the dif-
ferent fermented vegetables that can be found on the 
market is wide, and responds to the different compo-
sitions presented by raw material, the environment 
and the physicochemical conditions prevailing dur-
ing the fermentation process (Hurtado et al., 2012).

In the specific case of table olives, the most 
representative genus, as mentioned above, is 
Lactobacillus, with L. pentosus and L. plantarum 
as the predominant species (Benítez-Cabello et al., 
2019; Botta and Cocolin, 2012), which show a great 
intra-specific diversity with the presence of differ-
ent biotypes, depending on variety, type of process-
ing, and geographical area. Other microorganisms 
identified during the fermentation process belong to 
the genera Enterococcus, Pediococcus, Leuconostoc, 
and Lactococcus, but always in a smaller propor-
tion. Kimchi is also a fermented vegetable made 
with cabbages, radish, and various vegetables, and 
has great production and tradition in South Korea. 
As in the case of olives, there is also a great diversity 
of lactic bacteria, especially the genera Weissella, 
Leuconostoc, and Pediococcus. Furthermore, several 

species of Lactobacillus and Leuconostoc have 
been  identified in the fermentation of sauerkraut 
(cabbage). Finally, P. ethanolidurans, E. thailandicus,  
and different species of the genus Lactobacillus 
and Leuconostoc have been described as the most 
abundant species during the production of pickled 
cucumbers.

As a summary, Table 1 shows the main LAB 
species identified in diverse types of fermented 
vegetables.

4. �IDENTIFICATION AND GENOTYPING 
OF LAB IN FERMENTED VEGETABLES: 
FROM MORPHOLOGICAL TECHNIQUES 
TO OMICS APPROACH

The conventional methods for the identification 
of LAB are based on morphological and physiologi-
cal characteristics such as Gram stain, spore forma-
tion, enzyme production, and the determination of 
diverse biochemical reactions. Taking into account 
these techniques, the API system (BioMerieux, 
France) has been widely used. This biochemical 
methodology is based on the fermentative profile 
presented by microorganisms for a battery of carbo-
hydrates. However, LAB present similar nutritional 
and growth needs, so these tests are not conclusive 
in most cases (Randazzo et al., 2004).

At the end of the 90s, different molecular tech-
niques were established, allowing for a more in-
depth study of the bacterial ecology of food. The 
partial amplification by PCR (Polymerase Chain 
Reaction) of the DNA or RNA extracted directly 
from the microorganisms of interest, and its subse-
quent sequencing allows for microbial identification 
with much better precision thanks to the databases, 

Table 1. Summary of LAB species identified in the main types of fermented vegetables

Vegetable Matrix Specie Reference

Table olives L. pentosus, L. plantarum, L. paraplantarum, 
L. parafarraginis, L. sanfranciscensis, Pediococcus sp., 
Lc. mesenteroides

(Abriouel et al., 2011; Hurtado et al., 2012; 
Bautista-Gallego et al., 2013; Benítez-Cabello et al., 
2016, 2019)

Kimchi L. curvatus, L. sakei, Lc. mesenteroides, Lc. gelidum, 
Lc. carnosum, Lc. gasicomitatum, P. pentosaceus, 
W. soli, W. cibaria, W. koreensis, W. cibaria

(Jung et al., 2013; Jang et al., 2014; Hong et al., 
2015; Ji, Jang and Kim, 2015; Kyung et al., 2015; 
Kim et al., 2017)

Sauerkraut L. plantarum, L. pentosus, Lc. mesenteroides, 
L. brevis, L.sakei, L. curvatus, L. paraplantarum, 
L. coryniformis, P. pentosaceus, Lc. citreum, 
Lc. argentinum, Weissella sp.

(Johanningsmeier et al., 2007; Plengvidhya et al., 
2007; Qing Yue et al., 2013; Yan et al., 2015)

Cucumbers L. pentosus, L. plantarum, L. brevis, L. paracasei; 
Weissella spp., P. ethanolidurans, Leuconostoc spp., 
Lactococcus spp

(Breidt et al., 2013a; Medina et al., 2016a; Pérez-
Díaz et al., 2016)

Other fermented 
vegetables

Enterococcus thailandicus E. casseliflavus, Lc. lactis, 
Lc. mesenteroides, W. hellenica. L. pentosus, 
L. plantarum, L. paraplantarum, L. brevis, 
L. citrtreum, L. alimentarius, L. paracasei, 
L. buchneri, P. ethanolidurans

(Breidt et al., 2013b; Tamminen et al., 2004; Chen 
et al., 2012; Yu et al., 2012; Wouters et al., 2013; 
Elmacı et al., 2015; Reina et al., 2015)
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such as NCBI GenBank (https://blast.ncbi.nlm.
nih.gov/Blast.cgi). Other molecular techniques use 
random amplified polymorphic DNA (RAPD), 
repetitive elements of bacterial DNA (rep-PCR) 
or combined PCR followed by enzymatic digestion 
(RFLP). These techniques create fragments with 
different lengths, giving rise to a specific band pro-
file for each strain (finger printing).

In recent years, many studies have used this 
molecular approach to distinguish different bio-
types within the same species in the field of fer-
mented vegetables (De Bellis et al., 2010; Franzetti 
et al., 2011; Aponte et al., 2012; Breidt et al., 2013a; 
Benítez-Cabello et al., 2019). These molecular tools 
are very popular to characterize and carry out phylo-
genetic studies on microbial communities (Abriouel 
et al., 2012; Lucena-Padrós et al., 2014; Romero-Gil 
et al., 2016).

Due to the disadvantages of these culture-
dependent techniques, the term “independent cul-
ture techniques” was defined, without the need 
for the culture of microorganisms in which DNA 
or RNA are extracted directly and analyzed from 
the food matrix. Undoubtedly, the independent 
culture methods offer several advantages over the 
dependent culture methods, such as: i) to avoid the 
use of specific culture media; ii) they are based on 
the presence of DNA, RNA, or proteins; iii) the 
physiological state of the cell has no affect; and iv) 
these methods are able to detect populations whose 
concentration is lower than the detection limits of 
traditional methods (Cocolin and Ercolini, 2007). 
However, the selection of the target for these tech-
niques must satisfy two premises: i) to be common 
for all members of the microbial group to consider; 
and ii) the presence of conserved regions for the uni-
versal primer design, and variable regions for a pos-
sible differentiation. Clear examples are the genes 
encoding ribosomal RNA (rRNA), such as various 
regions of the 16S genes for bacteria, or 26S and 
ITS genes for yeasts.

At the end of the 90s, the DGGE technique 
(gel electrophoresis with denaturation gradient) 
was introduced in food microbiology (Ampe et al., 
1999). Amplification of the variable 16S region 
combined with DGGE allowed for the discrimina-
tion of the PCR products based on their mobility 
as determined by the specific DNA sequence of the 
amplicon. DGGE has made it possible to better 
understand the microbial diversity of a wide vari-
ety of foods, including kimchi (Lee et al., 2005) and 
table olives (Abriouel et al., 2011; Benítez-Cabello 
et al., 2016; Lucena-Padrós et al., 2015).

Finally, from the 2010s, the use of next-genera-
tion sequencing (NGS) and metagenomics in foods, 
including fermented vegetables, has become wide-
spread. These novel techniques have revolutionized 
the field of microbial ecology in food through more 
precise identification of microbial taxa without the 

need for culture-dependent methods. In the particu-
lar case of fermented vegetables, metagenomics has 
become an ideal tool for the study of the bacterial 
biodiversity of table olives (Cocolin et  al., 2013; 
De Angelis et al., 2015; Medina et al., 2016b; 2018; 
De Castro et al., 2018), cucumbers (Medina et al., 
2016a), kimchi (Hong et al., 2015, Kyung et al., 2015) 
and other fermented vegetables (Reina et al., 2015). 
However, these studies based on massive sequenc-
ing can generate partial representations of microbial 
diversity, so Ferrocino and Cocoli (2017) proposed 
using a multi-omic approach in the future, for exam-
ple, combining it with metatranscriptomic or meta-
proteomics data.

5. �APPLICATION OF LAB AS STARTER 
CULTURES IN FERMENTED VEGETABLES

The fermentation processes will be defined by dif-
ferent physiochemical parameters (salinity, acidity, 
temperature, presence of antimicrobial compounds, 
etc.) which will be decisive for obtaining a fermented 
product of high quality, which is safe and microbio-
logically stable. Fermentation can occur spontane-
ously; however, several authors recommend the use 
of starter cultures in order to manage the process 
(Corsetti et  al., 2012; Lee et  al., 2015). For many 
years, the search for starters with application in 
vegetables has been practically strictly focused on 
the activity of LAB and their technological appli-
cations. Recently, several authors have emphasized 
the role of selected yeasts in combination with LAB 
during processing due to their multifunctional fea-
tures (Arroyo-López et al., 2012a). Yeasts could be 
especially effective in diverse fermented vegetables 
where LAB are partially inhibited by the presence of 
high concentrations of antimicrobial compounds, 
such as directly brined table olives (Arroyo-López 
et al., 2012a; Ruiz-Barba et al., 1993).

The selection criteria for LAB for their use as 
starter cultures has traditionally been related to the 
homo-fermentative metabolism that implies a rapid 
rate of sugar consumption and lactic acid produc-
tion, good adaptation to intrinsic conditions of 
temperature, pH, salt, and inhibitory compounds 
throughout the process, and resistance to bacte-
riophages, bacteriocin production as an important 
factor in establishing strains which help to increase 
the quality and safety, improvement in organoleptic 
characteristics, minimum nutritional requirement, 
enzymatic activities (esterase and β-glucosidase) 
related to the biological de-bittering of fruits, and 
good imposition rates, among many other char-
acteristics (Benítez-Cabello et  al., 2019; Hurtado 
et al., 2012). Technologically, a starter culture must 
have the ability to prevail against the autochthonous 
microbiota and resist freezing or freeze-drying pro-
cesses for producing a commercial starter. Many of 
these starter cultures currently used in fermented 
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vegetables belong to the Lactobacillus, Leuconostoc, 
and Pediococcus genera. Furthermore, these starter 
cultures should be also monitored to avoid possible 
negative characteristics, such as production of bio-
genic amines, off  flavor and odor, pectinolytic activ-
ity, etc. The presence of biogenic amines has been 
reported in sauerkraut and table olives, where the 
presence of amino-biogenic spoilage microorgan-
isms can result in high putrescine, cadaverine and 
tyramine contents (Medina-Pradas and Arroyo-
López, 2015; Rabie et al., 2011).

Probiotic foods have been associated for a long 
time with dairy products with the disadvantage of 
not being able to be consumed by people intolerant 
to lactose, in addition to their high cholesterol con-
tent (Granato et al., 2010). This scene opens a new 
possibility for the development of starter cultures 
in fermented vegetables with probiotic potential. 
Many researchers have studied the probiotic charac-
teristics of several LAB species from the fermenta-
tion of sauerkraut, kimchi, cabbage, carrot or fresh 
beans (Argyri et al., 2013; Botta et al., 2014; Benítez-
Cabello et  al., 2019; Peres et  al., 2012; Di Cagno 
et  al., 2013;). Studies with LAB probiotic strains 
isolated from artichokes and table olives showed 
similar, even higher survival rates than those from 
milk probiotics during simulated human digestion 
(Bautista-Gallego et al., 2013; Lavermicocca et al., 
2005; Arroyo-López et al., 2014).

Therefore, new challenges for the development 
of starter cultures should be focused on the study 
of the probiotic characteristics of autochthonous 
microorganisms present in vegetables, highlighting 
LAB and yeast, with the aim of establishing mul-
tifunctional mixed starter cultures that are com-
plementary both in their properties and modes of 
action. Besides an appropriate technological behav-
ior, a multifunctional starter culture must be able to 
exert other biological activities of interest such as 
cholesterol removal, inhibitory or exclusion activ-
ity against pathogenic microorganisms, resistance 
to acidic conditions of gastric and pancreatic diges-
tion, phytase, antioxidant, and lactase activities, no 
antibiotic resistance, production of functional exo-
polysaccharides, adhesion to human cellular lines, 
and immunomodulatory activity, among others.

6. �LAB-FORMING BIOFILMS IN 
FERMENTED VEGETABLES

In recent years, diverse fermented vegetables 
have been proven as carriers of potential probiotic 
microorganisms to the human body. Several stud-
ies with scanning electron microscopy have observed 
that some microorganisms present in the fermenta-
tion of vegetables have the ability to form biofilms 
on the surface of the food, as occurs with table 
olives (Arroyo-López et  al., 2012a; Domínguez-
Manzano et  al., 2012). This biofilm is composed 

of a poly-microbial community, mostly of lacto-
bacilli and yeasts, which has been embedded by an 
extracellular exopolysaccharide matrix whose func-
tion is to protect them from the environment and 
bind them to the epidermis of the fruit thanks to 
its adhesive properties. The EPS produced by these 
biofilm-forming microorganisms also has func-
tional properties, such as to avoid adhesion of other 
pathogen microorganisms to animal cellular lines 
(González Ortiz et al., 2013). Biofilms can be formed 
on biotic (vegetables) or abiotic (wall fermentation 
vessels, machinery, etc.) surfaces.

The study of the interactions between yeasts and 
LAB to form biofilms, the development of mixed 
starter cultures and the formation of biofilms is 
quite recent in the field of fermented vegetables. It 
opens the possibility of converting these foods into 
an excellent vector of beneficial microorganisms 
to the final consumer. In several studies conducted 
on table olive biofilms, mixed microbial popula-
tions have been found of up to 8 log10 CFU g-1 of 
L. pentosus among LAB, and Pichia galeiformis, 
Candida sorbosa, Geotrichum candidum, S. cerevi-
siae and W. anomalus among yeasts (Arroyo-López 
et  al., 2012a; Domínguez-Manzano et  al., 2012). 
Moreover, these microorganisms did not lose via-
bility during long-term storage in olive packing at 
room temperature without a cold chain (Rodríguez-
Gómez et al., 2014). Certain combinations of yeasts 
and lactic acid bacteria favor the formation of bio-
films. León-Romero et al., (2016) reported that the 
interaction between diverse genotypes of C. boidinii 
and W. anomalus in a mixed culture with L. pentosus 
formed the best biofilm, which was not found for 
other strains. Biofilm formation can be inhibited by 
the presence of D -(+) mannose and stimulated even 
in the absence of cell-cell contact between yeast and 
LAB species.

However, the research on the genes involved in 
a biofilm formation process, the modulation of 
their expression in a mixed culture, the interac-
tion between yeast-LAB and with the surround-
ing matrix is still scarce, despite the importance of 
yeast-LAB cultures and the presence of biofilms in 
the elaboration of fermented vegetables.

7. CONCLUSIONS

In the last decade, research on fermented veg-
etables has been building on new and advanced 
techniques that have allowed for establishing a more 
solid base of knowledge about the microbial ecol-
ogy implied in elaboration processes. In particular, 
the molecular and metagenomic techniques and 
the further bio-informatic analysis will allow for 
an in-depth study of the role of LAB throughout 
fermentation, the microbial changes during process-
ing conditions, geographical and varietal influences, 
and application of cleaning procedures, etc.
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Moreover, the use of a new generation of mul-
tifunctional starter cultures (technological + probi-
otic) will result in better process control, reducing 
economic losses and spoilage, improving the quality 
and safety aspects, but at the same time, producing a 
product with higher functional value open new mar-
ket niches.
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