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SUMMARY: There is a contentious need for robust and rapid methodologies for maintaining the authenticity of foods. The aim of this 
study was to detect and quantify argan oil adulteration using Laser Induced Fluorescence (LIF) spectroscopy coupled with chemometric 
methods. Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR) were used to assess argan oil authenticity; 
PCA was used to classify samples according to their quality and the PLS model to determine the amount of adulterants in pure argan oil. 
The correlation coefficient of the obtained model was about 0.99, with Root Mean Square Error of Prediction (RMSEP) and Standard Er-
ror of Prediction (SEP) of 2%. This study demonstrated the feasibility of LIF spectroscopy combined with chemometric tools to identify 
adulterants in pure argan oil from a percentage of adulteration, of 0.35 % without the need to destruct samples. 
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RESUMEN: Detección rápida de la adulteración de aceite de argán con aceites de fritura usando espectroscopía de fluorescencia 
inducida por láser combinada con herramientas quimiométricas. Existe una necesidad de metodologías sólidas y rápidas para deter-
minar la autenticidad de los alimentos. El objetivo de este estudio es detectar y cuantificar la adulteración del aceite de argán mediante 
espectroscopia de fluorescencia inducida por láser (LIF) junto con métodos quimiométricos. Se utilizaron el análisis de componentes 
principales (PCA) y la regresión de mínimos cuadrados parciales (PLSR) para evaluar la autenticidad del aceite de argán. Se utilizó 
PCA para clasificar las muestras según su calidad y el modelo PLS se aprovechó para determinar la cantidad de adulterantes en el aceite 
de argán puro. El coeficiente de correlación del modelo obtenido fue de alrededor de 0,99, el error cuadrático medio de la predicción 
(RMSEP) y el error estándar de predicción (SEP) del 2%. Este estudio demostró la viabilidad de la espectroscopia LIF combinada con 
herramientas quimiométricas que permiten identificar adulterantes en aceite de argán puro, sin necesidad de destruir muestras, a partir de 
un porcentaje de adulteración del 0,35 %.
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1. INTRODUCTION

Food fraud is when a food is not presented in its 
authentic form. It can present serious health risks if 
hazardous materials are added to food products. It 
can also have an economic impact on consumers for 
investing in products of inferior quality (Charlebois 
et al., 2016). Over the last decade, food fraud has 
been identified as an emerging risk to the food indus-
try and a significant concern to consumers and food 
regulators (Ulberth, 2020). Among the foods that are 
subject to fraud is argan oil. This oil is very valua-
ble thanks to its virtues and high price (Ruas et al., 
2015). It is one of the oils that has been frequently 
subjected to adulteration. Sometimes suppliers can 
adulterate pure argan oil using a low percentage de-
gree of cheap vegetable oils, precisely frying oils, 
to give acceptable analytical values that can give a 
favorable quality assessment to the adulterated oil as 
pure oil. Argan oil is obtained from the fruit of the 
argan tree. This tree is native to southwestern Mo-
rocco, which covers an area of ~829000 ha. Its life 
span frequently exceeds 200 years (Gonzalez-Fer-
nandez et al., 2020). Moreover, there is a Moroccan 
regulation, developed in 2003, that manages argan 
oil according to NM 08.5.090 standards (Moroccan 
Standard 2003).

This oil is well known for its pharmacological 
properties and has been used in traditional medi-
cine for centuries. Scientific evidence has inferred 
from experimental studies that the consumption of 
argan oil may reduce the risk of disease through a 
biological mechanism which acts on blood pressure, 
plasma lipids and antioxidant status (El Midaoui et 
al., 2016). Thanks to its composition which is rich in 
antioxidants and monounsaturated and polyunsatu-
rated fatty acids, argan oil could be used in a nutri-
tional prevention setting to prevent the progression 
of some diseases (ELMostafi et al., 2020). These dif-
ferent actions are ensured by its interesting chemical 
composition, rich in antioxidants, such as vitamin 
E, and in particular in gamma tocopherols, as well 
as the presence of specific polyphenols and sterols 
(Şekeroğlu et al., 2017).

The demand for high quality and safety in food 
production obviously calls for high standards of 
quality and process control (Kharbach et al., 2021), 
which in turn requires appropriate analytical tools 
to investigate food. The above discussion clear-

ly gives the importance of finding a way to detect 
adulteration, so that the quality of argan oil is guar-
anteed (Kharbach et al., 2021). There are conven-
tional methods used in the detection of adulteration 
including gas chromatography (Xing et al., 2019), 
electronic nose and tongue technology (Majchrzak 
et al., 2018), and UV photo-ionization ion mobil-
ity spectrometry (Garrido-Delgado et al., 2018), 
TR-FTIR spectroscopy (Ozulku et al., 2017), among 
others. These methods provide high efficiency and 
sensitivity, and can measure multiple components. 
However, they are time consuming, expensive and 
complicated. That is why there is high demand for 
a sensitive technique that can provide result in less 
time, without generating waste, at low cost, and 
without the need for super-qualified personnel. An-
alytical methods are an important point to consider 
for both detecting and deterring food fraud (Callao 
and Ruisánchez, 2018). Thus, the need for rapid, 
low-cost and confinable analytical methods has mo-
tivated the use of spectroscopic techniques associat-
ed with chemometrics to characterize oils and fats 
(Dogruer et al., 2021).

Chemometric methods use multivariate statistic 
to extract information from complex analytical data 
(Yang et al., 2005). However, LIF was highlighted 
as a potential analytical technique for oils and fat 
characterization because it meets all routine analysis 
requirements and appears to be the best technique 
for analyzing oil adulteration. This technique now 
has the potential to replace or complement classical 
methods, and a number of works have been report-
ed for detecting vegetable oil adulteration (Addou et 
al., 2016; Wang and Wan, 2020). LIF is a sensitive, 
fast, less expensive and non-polluting method of 
analysis, increasingly used in various fields of prod-
uct analysis, and food industry to assess quality. It 
provides information on the presence of fluorescent 
molecules and their molecular environment within 
the samples analyzed (Ozaki et al., 2013). Indeed, 
the fluorescent properties of molecules are very sen-
sitive to changes in their environment. The answer 
then varies according to the composition and charac-
teristics of the material (Karoui and Blecker, 2011).

In this paper, LIF has been used to determine 
argan oil adulteration with waste frying oil. A LIF 
system was assembled in the experiment. Using an 
Nd: YAG laser beam (532 nm), the fluorescence 
spectra of mixtures of pure and adulterated argan oil 
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were measured. The identification of several impor-
tant vegetable oils and the adulterated concentration 
were achieved by employing PCA (Chikri et al., 
2018; Tipping and Bishop, 1999) and PLS model 
(Wold et al., 2001; Srata et al., 2019). The predic-
tion errors of adulterated concentration were about 
2%. The results can provide reference for the quality 
identification of argan oil, knowing that the adulter-
ation was carried out using two kinds of adulterants.

2. MATERIALS AND METHODS

2.1. Sample preparation

In this work, argan oil, noted AO, was used to as-
sess its adulteration by two commercial vegetable oils 
noted VO1 and VO2. VO1 is commercial sunflower 
oil and VO2 is commercial edible oil sold without any 
indication of its origin. Cheap vegetable oils (VO1 
and VO2) were purchased from a market in Oujda 
(East of Morocco) and pure argan oil (handmade) was 
obtained from Agadir (south of Morocco). 

The samples were divided into two groups. The 
first one contained samples of AO adulterated by 
VO1 (54 samples), and the second one contained 
AO adulterated by VO2 (55 samples). Cheap oils 
were heated at 200 °C for 30 minutes many times, 
until the oil had the same color as AO. VO1 and 
VO2 were heated for the reason that fraudsters use 
waste frying oil to adulterate argan, since this oil 
has the same color as argan oil and the detection of 
adulteration becomes more difficult. The process of 
adulteration was achieved as follows: AO was adul-
terated by VO1 from 0 to 31% and by VO2 from 0 
to 32%. A total of 109 samples were prepared. The 
first sample in each group contained 100% AO and 
the second one contained 99.6% AO and 0.4% adul-
terant (VO1 or VO2). The procedure was repeated 
for all samples, increasing the number of drops of 
adulterant for each sample by one drop. Therefore, 
for each sample, a drop of pure AO oil was replaced 
by a drop of adulterant. The drops were added using 
a micropipette and masses were measured using a 
digital scale of very high sensitivity. Finally, the pre-
pared samples were homogenized and stored in the 
dark at ambient temperature.

2.2. LIF analysis

LIF is a physical phenomenon in which a mole-
cule absorbs an amount of the energy from a laser 

beam. There is thus a transition from a ground state 
S0 to an excited state S1 with a change in the elec-
tron orbital. This excited state S1 has a very short 
lifetime (a few nanoseconds). Changes in confor-
mation and interactions with surrounding mole-
cules change the molecule from the excited state 
S1 to low vibrational levels of S1: this is the internal 
conversion. In the case of fluorescent molecules, 
the transition from the excited state S1 to the ground 
state S0 takes place with the release of a photon of 
lower energy. This phenomenon is laser induced 
fluorescence, which occur at wavelengths greater 
than the incident excitation wavelength (Mazouffre 
2009). The LIF system used in this work was an as-
sembled system. The spectral measurement of the 
LIF technique was obtained by irradiating the sam-
ples with an Nd: YAG laser beam (532 nm) set at 
2 mW, with 3.3 V DC operating voltage and 0.4 A 
current. During irradiation, the fluorescence emit-
ted by the samples was collected by an optical fiber 
(2 m long and 400 μm in diameter), equipped with 
an SMA type connector at each end. The axis of the 
optical fiber was positioned at an angle of 90° to 
the direction of the laser beam in order to collect 
as much fluorescent signal as possible and avoid 
the detection of photons from the incident beam. 
The beam was dispersed by a spectrophotome-
ter Avantes, model USB2000, grating 600 lines, 
blazed at 750 nm, L2 lens, 100 µm slit, equipped 
with a 2048-pixel charge coupled detector CCD. It 
consisted of a linear array of silicon (Si) diode and 
was linked to a computer by a USB connection in 
order to visualize the fluorescent spectra of each 
sample. The spectrophotometer used in this work 
covered the spectral range 500-1000 nm. Note that 
the spectra were performed in three replicates, un-
der the same conditions. Analyses were made using 
the average.

2.3. Data processing

The obtained spectral data were converted into 
Microsoft Office Excel format for Matlab software 
analysis. The spectral range was reduced from 500-
1000 nm to 540-750 nm. Then, to reduce noise and 
baseline shifts, the spectra were corrected using pre-
processing, whose objectives were the attenuation 
of non-linearity between variables, the elimination 
of interference and reduction of random noise (Ver-
boven et al., 2012). 
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Before multivariate data analysis, all LIF spec-
tra were subjected to Savitzky-Golay smoothing (1 
point, 2 orders) then the spectra obtained were sub-
jected to a Multiplicative Scatter Correction (MSC) 
combined with a second derivative for PCA anal-
ysis and combined to Baseline for PLS modeling 
(Savitzky and Golay, 1964; Zheng et al., 2015). 
MSC is a diffusion correction method that was in-
troduced in 1983 and developed in 1985 (Guidetti 
et al., 2012). It is based on the idea of correcting 
the level of dispersion of all sample spectra from 
an “ideal” spectrum, which is usually the average 
spectrum. The concept behind MSC is that artifacts 
or imperfections will be removed from the data ma-
trix (spectra) prior to modeling. The MSC consists 
of two steps:

- Estimation of the correction coefficients (addi-
tive and multiplicative contributions): Each spectrum 

 is then estimated with respect to the average 
spectrum of all the spectra considered  
by a method of least squares. 

++=
- Correction of recorded spectrum: 

: represents the spectrum of the residues
: corrected spectrum

 and  are the correction coefficients that can be 
estimated by a least squares method. 

The first and second derivatives are used 
for baseline variation reduction and separation 
of overlapping bands, so hidden bands are en-
hanced. With regards to baseline preprocessing, 
most correction methods make the supposition 
that the observed spectrum is the combination 
of a useful signal and a signal of uncontrolled 
variation. Therefore, the correction consists of 
subtracting the background from the obtained 
signal.

2.4. Data analysis

The wavelength range used for LIF analysis 
was reduced to 540 - 750 nm to keep only the part 
that contains relevant information and to eliminate 
noise. PCA was exploited to get main information 
from spectra and reduce the number of variables. 
Then PLS algorithm was applied on LIF spectra to 

establish a model that can predict the percentage 
of adulteration. PLS calibration gives optimum 
results compared to many other multivariate cali-
bration methods. An important aspect of PLSR is 
that it collects the relevant spectral information in 
a few linear combinations of the spectral measure-
ments. These combinations or components can be 
used to facilitate interpretation of the relationship 
between concentrations and spectra as well as the 
relationships among the spectral variables them-
selves.

The samples were divided into calibration/
validation and prediction datasets. The optimum 
number of latent variables was obtained using 
the full cross validation method. The predic-
tion performance of each model was evaluated 
throughout the root mean square error (which 
represents the standard deviation of the residu-
als), the prediction standard errors, and the coef-
ficient of determination (R2) of both calibration 
and validation data sets. In general, as low as the 
RMSEC/P and SEC/P values can be, and R2 as 
close as possible to 1, the better the model’s pre-
dictions will be. Equations corresponding to each 
parameter are:

−= ∑
=

∧

 Where:
 = the predicted value of the ith observation.
 = the measured value of the ith observation.
 = number of observations in the calibration set.
 = number of observations in the validation set.
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3. RESULTS AND DISCUSSION

3.1. Spectral characteristics

Figure 1 shows an overlay of LIF spectra of AO, 
VO1 and VO2 oils. The spectrum of VO2 oil showed 
emission at around 650 - 700 nm, This emission was 
due to the fluorescence of chlorophyll compounds. The 
AO spectrum showed a fluorescent band around 550 - 
625 nm, although this emission was practically absent 
from the VO1 and VO2 spectra. Figure 2 represents 
LIF spectra of the same samples after heating VO1 and 
VO2. The spectra showed the same shape with differ-
ent intensity. In this figure, the absence of the peak in 
the red region 650 - 700 nm could be observed, which 
means the absence of chlorophyll compound emission. 
It can be concluded from Figures 1 and 2 that heating 
produced the degradation of the Chlorophyll.

Figure 3 shows seven spectra in the spectral range 
of 544 - 750 nm. The first spectrum correspond to 
AO’s fluorescence and the other spectra represent 
the fluorescence of the adulterated samples, showing 
the tendency of the spectra according to the concen-
trations of adulterant. It can be seen from Figure 3 
that the spectra are similar to each other and they 
are a bit noisy. A vertical baseline shift and intensi-
ty difference between the spectra can also be seen. 
Actually, when an oil sample is adulterated, whether 
the amount of adulterant is small or large, the whole 
spectrum of the pure sample is affected. These defor-
mations are corrected using chemometric pretreat-
ments. In order to reduce variability in the spectra 
and improve the signal-to-noise ratio, the spectra 
were fitted using smoothing preprocessing and then 
MSC combined to the second derivative (Savistky - 
Golay) was applied as a suitable preprocessing for 
PCA analysis and MSC combined to the baseline 
for PLS analysis. After the spectra were pretreated, 
chemometric methods were used to extract hidden 
information.

Figure 1. Laser induced fluorescent spectra of pure argan oil, VO1 
and VO2 samples before heating without any pretreatments. VO: 

Commercial vegetable oil.

Figure 2. Laser induced fluorescent spectra of argan oil, VO1 
and VO2 samples after heating without any pretreatments. VO: 

Commercial vegetable oil.

Figure 3. Laser induced fluorescent spectra of some adulterated 
argan oil samples showing the tendency of spectra according to 

adulterant concentrations from 0 to 32% in the spectral range 540 
–750 nm. 

3.2. PCA results

After preprocessing the spectra using smoothing 
combined to MSC and the second derivative, PCA 
was performed to explore the similarities and dif-
ferences in samples, to extract relevant information 
and reduce the number of variables. Figure 4 pre-
sents the score plot of PCA applied to LIF spectra. 
A total 109 samples were measured in this work. 
The first two principal components accounted for 
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approximately 73% of the total variability in the 
data. PC1 explained 72% of the total variance and 
1% of the information was explained according to 
PC2. The interpretation of the results was made via 
loading plots; they describe how much each varia-
ble contributes to a particular principal component. 
Large loadings (positive or negative) indicate that 
a particular variable has a strong relationship to a 
particular principal component. There was a strong 
relationship between noise in the loadings and the 
optimal number of components. The concepts of un-
derfitting, overfitting and optimal prediction ability 
have an important connection to the shape of load-
ing plots, which can be seen when plotting loadings 
versus wavelength number for all the components 
computed. For the first few components correspond-
ing to the largest eigenvalues, the shapes of these 
plots looked like spectra, but as we went towards the 
components with smaller eigenvalue, we introduced 
more and more noise (overfitting) and this is some-
times clearly seen as ripples and irregularities in the 
loading plots. There was a tendency, that close to the 
optimal number of components, the noise started to 
become clearly visible in these plots. 

dispersed according to a two-dimensional space 
(PC1 and PC2) and divided into two sets according 
to the type of adulterants. The lower right group in 
the score graph consists of AO samples adulterated 
with VO2, noted group B and the higher left group 
consists of AO samples adulterated with VO1, noted 
group A. By projecting samples according to PC1, it 
can be easily noticed that the first component con-
tained information which was responsible for the 
separation between samples; a low separation exist-
ed by projecting samples according to PC2. Group B 
is located in the negative part of PC2 and group A is 
located in the positive part of PC2. It can be conclud-
ed that, by this model, it was possible to determine 
the type of adulterant for an unknown sample by tak-
ing its spectrum and injecting it into this model.

3.3. PLS result

PLS was exploited as a multivariate calibration 
technique. It constructs a mathematical model based 
on the features of PCA and multiple regression to 
find a linear mathematical relationship between two 
datasets, X (spectra) and Y (level of adulteration) 
(Morsy and Sun, 2013). 

The spectral data were arranged in a 2D matrix 
(X), the rows of this matrix represent the samples 
(109 samples) and the columns contain the number 
of variables. One column vector (Y) containing the 
concentration of each adulterant was added to this 
matrix and the data were then analyzed. To make 
sure that the obtained model was neither over nor 
underfit, a cross validation using the leave-one-out 
method was considered. The linearity of the regres-
sion model was evaluated by fitting the reference 
adulteration value against the predicted ones.

The above PCA model successfully identified 
the type of cheap edible oil added to AO. To further 
predict the contents of VO1 and VO2 in the blend-
ed oil samples, PLS regression was performed. This 
method has been successfully used in several studies 
to predict the percentage of adulterants in oils. PLS 
regression was applied on raw and pretreated spectra 
and the one that gave the best result was kept. In 
this work, LIF data were preprocessed by taking a 
smoothing (1 point) combined to MSC and Baseline. 
After removing the outliers, the set of samples was 
randomly divided into three sample sets samples, in 
which two sets were used as the experimental group, 
calibration/validation sets, containing almost 85% of 

Figure 4. Bi-dimensional score plots of PC1 and PC2 vectors of 
109 adulterated argan oil samples. Group A: Argan oil samples 

adulterated by VO1. Group B: samples of Argan oil adulterated by 
VO2. PC: Principal component, VO: Commercial vegetable oil.

After applying PCA to the pretreated spectra, 
samples were significantly classified. It can be seen 
from Figure 4 that PCA can distinguish samples 
from each other successfully. Adulterated argan oils 
are different after passing through the PCA process, 
and it can be seen from the figure that objects were 
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the total set of samples (70% calibration, 15 % val-
idation) and one set as the testing group containing 
the 15% remaining. 

The efficiency of the calibration model can be de-
termined generally from three statistical parameters: 
the correlation (R), the standard error of calibration 
(SEC) and the mean square error of calibration (RM-
SEC). a R value greater than 0.9 indicates a good 
response for the parameter studied and less than 0.7 
indicates a poor response. When a new spectrum is 
inserted into the matrix, it is compared to the spectral 
basis, the closest spectrum is then used to make a 
PLS regression.

The graphic display of the calibration/validation 
and prediction produced using the PLS model with the 
best performances is shown in Figure 5. The calibra-
tion results of 109 samples using PLSR produced ex-
cellent overall models with a correlation greater than 
0.99 and low values for RMSEC and SEC. The same 
was true for the predicted model. It gave excellent sta-
tistical values with a correlation of 0.92, RMSEP and 
SEP of about 2%. The results indicate that the method 
proposed in this work is feasible for the detection and 
quantification of argan oil adulteration by cheap vege-
table oils. Table 1 shows all the statistical results of the 
calibration and prediction models. A similar study was 

Figure 5. Training, validation and testing models of 109 samples in the spectral range 540 –750 nm. The model shows the best prediction 
accuracy.

Table 1. Results of the PLS regression model for the LIF data matrix.

Calibration Prediction

Correlation SEC RMSEC Correlation SEP RMSEP

0.99 2.25 2.23 0.92 2.40 2.38

SEC: Standard Error of Calibration, RMSEC: Root Mean Squares Error of Calibration, SEP: Standard Error of Prediction, RMSEP: Root 
Mean Squares Error of Prediction. Each value in the table represents the result of three repeated measurements.
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published using near infrared spectroscopy to evaluate 
the adulteration of argan oil by cheap oils (Farres et 
al., 2019). When comparing the results obtained in this 
work to those obtained in the published study, it can be 
easily seen that the R value is higher and error values 
are low. Therefore, it can be concluded that LIF spec-
troscopy was revealed to be most suitable technique to 
study the adulteration of argan oil, especially since both 
techniques were carried out on the same samples. Table 
2 groups together the results obtained using near infra-
red spectroscopy (published work) and laser-induced 
fluorescence spectroscopy.

4. CONCLUSIONS

Currently, spectroscopy techniques for food au-
thentication are important in the food industry. In 
this work, it has been demonstrated that LIF spec-
troscopy in combination with chemometric methods 
(PCA and PLS) can be used as fast and nondestruc-
tive methods for the rapid detection of AO adultera-
tion with different concentrations of cheap vegetable 
oil, VO1 and VO2. 54 samples were prepared con-
taining AO adulterated by VO1 and 55 samples of 
AO adulterated by VO2.

PCA was applied to show the existence of spectral 
differences and discriminate spectral data in relation 
with the adulteration of argan oil with cheap vege-
table oils. Samples were divided into two well-sep-
arated groups, easily allowing for the determination 
of the type of adulterant. It was important to use the 
combination of smoothing, MSC and second deriva-
tive as adequate spectral preprocessing to eliminate 
noise and any information that could skew the results. 
Then PLSR model was used to predict the amount of 
adulterant in argan oil. Before applying PLSR, the 
spectra were corrected using smoothing combined 
with MSC and baseline. Analyses were made on 109 
samples where 70% were randomly chosen to make 
the calibration model, 15% for the validation and the 
remaining 15% for prediction sets. The calibration 
results produced excellent models with a correlation 
of 0.99, RMSEC and SEC of about 2% and for the 
prediction model, the correlation obtained greater 
than 0.92 RMSEP and about 2% SEP. The obtained 
models were tested using non-synthetic samples and 
the results were satisfactory. New samples were suc-
cessfully classified according to the type of adulter-
ant. 

This study provided valuable results which could 
be applied to consumer protection, because the de-
mand for high quality and safety in food production 
obviously calls for high standards of quality and pro-
cess control. Less than 1 second LIF analysis by this 
model can detect the amount of adulterant in argan 
oil from 0.35%. 
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