$\begin{array}{c} \text{Amphoteric surfactants containing } \alpha \text{-hydroxy ester group} \\ \text{and an amino acid residue} \end{array}$

By A. M. F. Eissa

Chemistry Department, Faculty of Science, Benha University, Benha - Egypt. E-mail: ref_at@hotmail.com

RESUMEN

Tensioactivos anfóteros conteniendo un grupo alfa hidroxi éster y un residuo de aminoácido

Se prepararon una serie de tensioactivos anfóteros conteniendo un grupo alfa hidroxi éster y un residuo de aminoácido por adición de derivados epoxy (obtenidos mediante epoxidación de metacrilato de alquilo) a diferentes tipos de aminoácidos (glicina, alanina, valina, isoleucina, fenilalanina, tirosina, serina, treonina y ácidos aspártico y antranílico). Las estructuras de los compuestos preparados se confirmaron por los espectros de infrarrojo, de masa, resonancia magnética nuclear de protones y análisis elemental. Se determinaron la tensión superficial, el punto de Kraft, el poder espumante, la concentración micelar crítica en emulsión y las estabilidades de Ca++. También se estudiaron la actividad antimicrobiana y la biodegradabilidad.

PALABRAS-CLAVE: Actividad antimicrobiana – Biodegradabilidad – Tensioactivos anfóteros.

SUMMARY

Amphoteric surfactants containing α -hydroxy ester group and an amino acid residue

A series of amphoteric surfactants containing α -hydroxy ester group and an amino acid residue were prepared with the addition of epoxy derivatives (which were prepared from epoxidation of alkyl methacrylate) to different types of amino acids (glycine, alanine, valine, isoleucine, phenylalanine, tyrosine, serine, threonine, aspartic and anthranilic acid). The structures of the prepared compounds were confirmed by infrared spectra, proton magnetic resonance spectra, Mass spectra and elementary analysis. Surface tension, Kraft point, foaming power, critical micelle concentration emulsion and Ca⁺⁺ stabilities were determined. Antimicrobial activity and biodegradability were also screened.

KEY-WORDS: Anphoteric surfactants – Antimicrobial activity – Biodegradability.

1. INTRODUCTION

As a part of our program (Eissa., 2002; Eissa et al. 1996; Eissa. 1995; Eissa et al. 2003; Amin et al., 2004; El-Dougdoug et al., 2001) on the synthesis and characterization of different types of surface active agents, the author attempts to synthesize a novel group of amphoteric surfactants based on amino acid residue. Amino acids are not only essential components of the human body but also interesting raw materials for surfactants (Nasreddine et al., 1993). The presence of anionic and cationic moieties in the molecule of an amino acid makes it possible to prepare various kinds of surfactants by introducing a hydrophobic group into the molecule (KIrvens., 1953; Herrmann., 1963; Tokiwa et al., 1967; Bluestein et al., 1973; Andersen., 1957).

Sodium salts of long chain N-alkyl- β -alanines are well known amphoteric surfactants. Surfactants of the β -alanine type have been used in such applications as shampoos, cosmetics, emulsion paints, various products in the textile industry, corrosion inhibitors, industrial cleaning products and many others (Hikota., 1979). One of the most important features of these surfactants is that they are effective over a wide pH range, in their cationic form in an acidic solution, and in their anionic form in an alkaline solution, except at the isoelectric points. Furthermore, these surfactants are less toxic to higher animals and are not irritating to human skin (Christophe et al., 2002; Marion et al., 2002; Hironari et al., 2002; Infante et al., 2003).

The present paper deals with the preparation and functional properties of a series of amphoteric surfactants containing the α -hydroxy group and an amino acid residue. A series of these compounds was synthesized from alkyl methacrylate as raw starting material (alkyl; a, C₈H₁₇; b, C₁₂H₂₅; c, C₁₈H₃₇).

2. MATERIAL AND METHODS

The IR spectra in KBr were recorded on a Shimadzu 470 Spectrometer. The ¹H NMR were measured on Varian EM-390-90 MHz a spectrometer using TMS as internal reference and the chemical shifts are expressed as δ (ppm). The mass spectra were recorded on HP Model: MS 5988 at 70 eV. The physical and spectral data are listed in (Tables 1 and 2).

2.1. General procedure of formation of epoxy fatty ester (2a-c)

Alkyl methacrylate 1a-c (1 mmole) (Figure 1) in glacial acetic acid (40 ml) was mixed with 8 % aqueous sodium hydroxide (12 ml) followed by the addition of hydrogen peroxide (30 % 5 ml). The

Compds					Analysis Calcd/Found %			
	R	R'	m.p °C Yield%	M. F M.wt	С	н	Ν	
2a	C ₈ H ₁₇		65-67 (69%)	C ₁₂ H ₂₂ O ₃ 214.31	67.26 67.32	10.35 10.41		
2b	C ₁₂ H ₂₅		63-65 (75%)	C ₁₆ H ₃₀ O ₃ 270.24	71.07 71.12	11.18 11.24		
2c	C ₁₈ H ₃₇		66-68 (70%)	C ₂₂ H ₄₂ O ₃ 354.58	74.52 74.57	11.94 11.99		
3a	C ₈ H ₁₇	-H	120-122 (76%)	C ₁₄ H ₂₇ NO ₅ 289.37	58.11 58.16	9.40 9.45	4.84 4.89	
3b	$C_{12}H_{25}$	-H	125-127 (74%)	C ₁₈ H ₃₅ NO ₅ 345.48	62.586 2.63	10.211 0.25	4.05 4.09	
Зc	C ₁₈ H ₃₇ -H		123-125 (78%)	C ₂₄ H ₄₇ NO ₅ 429.65	67.09 67.13	11.031 1.08	3.26 3.30	
4a	C ₈ H ₁₇	-CH ₃	90-92 (77%)	C ₁₅ H ₂₉ NO ₅ 303.40	59.38 59.43	9.63 9.68	4.62 4.67	
4b	4b C ₁₂ H ₂₅ -CH ₃		90-92 (68%)	C ₁₉ H ₃₇ NO ₅ 359.51	63.48 63.52	10.371 0.42	3.90 3.95	
4c	C ₁₈ H ₃₇	-CH ₃	91-93 (65%)	C ₂₅ H ₄₉ NO ₅ 443.67	67.686 7.73	11.131 1.17	3.16 3.20	
5a	C ₈ H ₁₇	CH(CH ₃) ₂	85-87 (75%)	C ₁₇ H ₃₃ NO ₅ 331.46	61.60 61.65	10.04 10.09	4.23 4.27	
5b	C ₁₂ H ₂₅	CH(CH ₃) ₂	80-82 (70%)	C ₂₁ H ₄₁ NO ₅ 387.56	65.086 5.12	10.661 0.70	3.61 3.65	
5c	C ₁₈ H ₃₇	CH(CH ₃) ₂	88-90 (71%)	C ₂₇ H ₅₃ NO ₅ 471.73	68.756 8.79	11.321 1.37	2.97 3.02	
6a	C ₈ H ₁₇	CH ₃ CH ₂ CH– I CH ₃	86-88 (65%)	C ₁₈ H ₃₅ NO ₅ 345.48	62.58 62.63	10.211 0.26	4.05 4.09	
6b	$C_{12}H_{25}$	CH ₃ CH ₂ CH– I CH ₃	85-87 (68%)	C ₂₂ H ₄₃ NO₅ 401.59	65.806 5.85	10.791 0.83	3.49 3.53	
6c	C ₁₈ H ₃₇	CH ₃ CH ₂ CH– I CH ₃	79-81 (66%)	C ₂₈ H ₅₅ NO ₅ 485.75	69.246 9.29	11.411 1.45	2.88 2.94	
7a	C ₈ H ₁₇	C ₆ H ₅ CH ₂ -	105-107 (74%)	C ₂₁ H ₃₃ NO ₅ 379.24	66.46 66.50	8.76 8.81	3.96 4.00	
7b	C ₁₂ H ₂₅	C ₆ H ₅ CH ₂ -	106-108 (77%)	C ₂₅ H ₄₁ NO ₅ 435.3	68.93 68.98	9.49 9.54	3.22 3.27	
7c	$C_{18}H_{37}$	$C_6H_5CH_2$ -	109-111 (69%)	C ₃₁ H ₅₃ NO ₅ 519.39	71.64 71.69	10.28 10.33	2.96 3.01	
8a	C ₈ H ₁₇	p-OHC ₆ H ₅ CH ₂	105-107 (65%)	C ₂₁ H ₃₃ NO ₆ 395.23	63.78 63.83	8.41 8.48	3.54 3.60	
8b	C ₁₂ H ₂₅	p-OHC ₆ H ₅ CH ₂	108-110 (60%)	C ₂₅ H ₄₁ NO ₆ 451.29	66.49 66.54	9.15 9.20	3.10 3.16	
8c	C ₁₈ H ₃₇	p-OHC ₆ H ₅ CH ₂	115-117 (74%)	C ₃₁ H ₅₃ NO ₆ 535.39	69.50 69.55	9.97 10.02	2.61 2.66	
9a	C ₈ H ₁₇	HOCH ₂	140-142 (61%)	C ₁₅ H ₂₉ NO ₆ 319.39	56.41 56.44	9.15 9.19	4.39 4.43	
9b	C ₁₂ H ₂₅	HOCH ₂	139-141 (60%)	C ₁₉ H ₃₇ NO ₆ 375.26	60.77 60.82	9.93 9.98	3.73 3.77	
9c	C ₁₈ H ₃₇	HOCH ₂	128-140 (66%)	C ₂₅ H ₄₉ NO ₆ 459.36	65.32 65.37	10.74 10.78	3.05 3.09	

Table 1. Physical data of the synthesized compounds

					Anal	ysis Calcd/Found	d %	
Compds	R	R'	m.p °C Yield%	M. F M.wt	с	н	Ν	
10a	C ₈ H ₁₇	CH₃CH– ∣ OH	120-122 (70%)	C ₁₆ H ₃₁ NO ₆ 333.22	57.64 57.68	9.37 9.41	4.20 4.24	
10b	C ₁₂ H ₂₅	CH₃CH– ∣ OH	118-120 (75%)	C ₂₀ H ₃₉ NO ₆ 389.28	61.67 61.71	10.09 10.14	3.60 3.66	
10c	C ₁₈ H ₃₇	CH₃CH– ∣ OH	121-123 (74%)	C ₂₆ H ₅₁ NO ₆ 473.37	65.93 65.98	10.85 10.88	2.96 2.99	
11a	C ₈ H ₁₇	HOOC-CH ₂	150-152 (60%)	C ₁₆ H ₂₉ NO ₇ 347.19	55.32 55.37	8.41 8.44	4.03 4.08	
11b	$C_{12}H_{25}$	HOOC-CH ₂	152-154 (65%)	C ₂₀ H ₃₇ NO ₇ 403.26	59.53 59.57	9.24 9.29	3.47 3.52	
11c	$C_{18}H_{37}$	HOOC-CH ₂	150-152 (75)	C ₂₆ H ₄₉ NO ₇ 487.35	64.03 64.08	10.13 10.17	2.87 2.90	
12a	C ₈ H ₁₇	o-NH ₂ C ₆ H ₅ COOH	130-132 (68%)	C ₁₉ H ₂₉ NO ₅ 351.45	64.93 64.98	8.32 8.37	3.99 4.05	
12b	$C_{12}H_{25}$	o-NH ₂ C ₆ H ₅ COOH	133-135 (73%)	C ₂₃ H ₃₇ NO ₅ 407.56	67.78 67.83	9.15 9.19	3.44 3.49	
12c	C ₁₈ H ₃₇	o-NH ₂ C ₆ H ₅ COOH	130-132 (75)	C₂9H₄9NO5 491.72	70.84 70.88	10.04 10.09	2.85 2.89	

 Table 1. (cont.)

 Physical data of the synthesized compounds

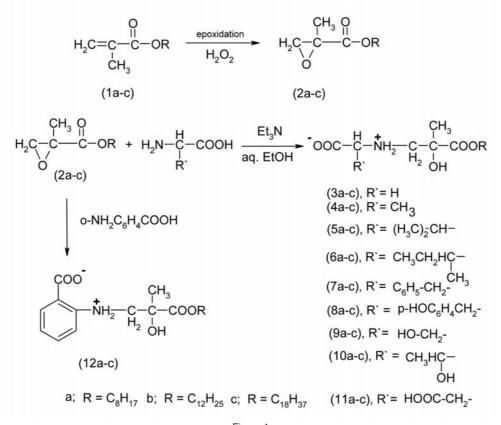


Figure 1 Scheme of the synthesis of the different compounds.

Compds	IR:	¹H NMR (CDCl₃): δ	MS: m/z (%)
2b	2920-2850 (CH ₂ aliphatic), 1720 (C=O) and 1270 (C-O)	0.9 (t, 3H, CH ₃ terminal of alkyl chain), 1.2 (m, 20H, CH ₂ of alkyl chain), 1.4 (s, 3H, CH ₃ of α -substituted ester), 3.1 (s, 2H, CH ₂ of oxirane ring) and 4.2 (t, 2H, COO <u>CH₂</u>)	
Зс	3420(OH), 3320 (NH), 2910-2830 (CH ₂ aliphatic), 1730 (C=O) and 1300 (C-O)	 0.96 (t, 3H, CH₃ terminal CH₃ of alkyl chain), 1.3 (m, 32H, CH₂ of alkyl chain), 1.6 (s, 3H, CH₃ of α-substituted esters), 2.0-2.2 (broad, 2H, NH and alcoholic OH), 2.9 (s, 2H, NH<u>CH₂</u>), 3.5 (s, 2H, <u>CH₂COOH</u>), 4.1 (t, 2H, COO<u>CH₂</u>) and 11.2 (s,1H, COOH) 	M*+1= 430 (30
4a	3450 (OH), 3340 (NH), 2950-2820 (CH ₂ aliphatic), 1710 (C=O) and 1280 (C-O)	0.9 (t, 3H, CH ₃ terminal CH ₃ of alkyl chain), 1.3 (m, 12H, CH ₂ of alkyl chain), 1.5 (s, 3H, CH ₃ of α -substituted ester), 1.7 (d, 3H, CH ₃ of α -substituted carboxylic acid), 2.2 (broad, 2H, NH and alcoholic OH), 2.7 (s, 2H, NH <u>CH₂</u>), 3.6 (q, 1H, α -hydrogen to COOH), 4.1 (t, 2H, COO <u>CH₂</u>) and 11.2 (s,1H, COOH)	M* = 303 (25)
5b	3420 (OH), 3300 (NH), 2950-2820 (CH ₂ aliphatic), 1700 (C=O) and 1270 (C-O)	 0.9 (t, 3H, CH₃ terminal CH₃ of alkyl chain), 1.1 (d, 6H, 2CH₃ of isopropyl moiety), 1.3 (m, 20H, CH₂ of alkyl chain), 1.4 (s, 3H, CH₃ of α-substituted ester), 2.2 (broad, 2H, NH and alcoholic OH), 2.5 (m, 1H, <u>CH</u>(CH₃)₂), 2.8 (s, 2H, NH<u>CH₂</u>), 3.5 (d, 1H, α-hydrogen to COOH), 4.0 (t, 2H, COO<u>CH₂</u>) and 11.0 (s,1H, COOH) 	
6c	3450 (OH), 3340 (NH), 2950-2820 (CH ₂ aliphatic), 1710 (C=O) and 1275 (C-O)	0.9-1.1 (m, 9H, 3 CH ₃ (terminal CH ₃ of alkyl chain and 2 CH ₃ of amino acid residue), 1.2 (m, 32H, CH ₂ of alkyl chain), 1.3 (m, 2H, CH ₂ of alkyl chain of amino acid residue), 1.5 (s, 3H, CH ₃ of α -substituted ester), 2.2 (broad, 2H, NH and alcoholic OH), 2.5 (m, 1H, <u>CH</u> of alkyl chain of amino acid), 3.0 (s, 2H, NH <u>CH₂), 3.5 (d, 1H, α-hydrogen to COOH), 4.1 (t, 2H, COO<u>CH₂)</u> and 11.0 (s,1H, COOH)</u>	M⁺-2= 483 (35)
7a	3430 (OH), 3220 (NH), 3006 (CH aromatic), 2930-2810 (CH ₂ aliphatic), 1730 (C=O) and 1285 (C-O)	0.9 (t, 3H, CH ₃ terminal CH ₃ of alkyl chain), 1.3 (m, 12H, CH ₂ of alkyl chain), 1.5 (s, 3H, CH ₃ of α-substituted esters), 2.1 (broad, 2H, NH and alcoholic OH), 2.7 (s, 2H, NH <u>CH₂), 3.1 (d, 2H, CH₂-Ph), 3.7 (t, 1H, α-hydrogen to COOH), 4.1 (t, 2H, COO<u>CH₂), 7.1-7.3 (m, 5H,</u> ArH) and 11.0 (s,1H, COOH)</u>	M⁺= 379 (22)
8c	3450 (OH), 3200 (NH), 3050 (CH aromatic), 2950-2820 (CH ₂ aliphatic),1720 (C=O) and 1300 (C-O)	0.9 (t, 3H, CH ₃ terminal CH ₃ of alkyl chain), 1.3 (m, 32H, CH ₂ of alkyl chain), 1.5 (s, 3H, CH ₃ of α -substituted ester), 2.1 (broad, 2H, NH and alcoholic OH), 2.7 (s, 2H, NH <u>CH₂</u>), 3.1 (d, 2H, <u>CH₂-Ph</u>), 3.7 (t, 1H, α -hydrogen to COOH), 4.1 (d, 2H, COO <u>CH₂</u>), 5.2 (br s, 1H, phenolic OH), 6.7-7.0 (d.d, 4H, ArH) and 11.1 (s,1H, COOH)	M⁺+2=537 (42
9b	3430-3250 (OH) and (NH), 2950-2820 (CH ₂ aliphatic), 1710 (C=O) and 1270 (C-O)	0.9 (t, 3H, CH ₃ terminal CH ₃ of alkyl chain), 1.3 (m, 12H, CH ₂ of alkyl chain), 1.5 (s, 3H, CH ₃ of α-substituted esters), 2.2 (broad, 3H, NH and 2 (alcoholic OH), 3.0 (s, 2H, NH <u>CH₂</u>), 3.6 (t, 1H, <u>CH</u> COOH), 3.9 (d, 2H, <u>CH₂-OH</u>), 4.2 (t, 2H, COO <u>CH₂</u>), and 11.2 (s,1H, COOH)	
10a	3420-3230 (OH) and (NH), 2950-2820 (CH ₂ aliphatic), 1710 (C=O) and 1270 (C-O)	0.9 (t, 3H, CH ₃ terminal CH ₃ of alkyl chain), 1.1 (d, 3H, CH ₃ in amino acid residue), 1.4 (m, 12H, CH ₂ of alkyl chain), 1.6 (s, 3H, CH ₃ of α -substituted ester), 2.1 (broad, 3H, NH and alcoholic 2 OH), 3.0 (s, 2H, NH <u>CH₂</u>), 3.4 (d, 1H, α -hydrogen to COOH), 3.9 (m, 1H, CH ₃ - <u>CH</u> -OH of amino acid part), 4.2 (t, 2H, COO <u>CH₂</u>) and 11.1 (s,1H, COOH)	M⁺= 333(32)
11c	3420-3220 (OH) and (NH), 2940-2830 (CH ₂ aliphatic), 1710 (C=O) and 1280 (C-O)	0.9 (t, 3H, CH ₃ terminal CH ₃ of alkyl chain), 1.3 (m, 32H, CH ₂ of alkyl chain), 1.6 (s, 3H, CH ₃ of α -substituted ester), 2.1 (broad, 2H, NH and alcoholic OH), 2.6 (d, 2H, <u>CH₂-COOH)</u> , 2.9 (s, 2H, NH <u>CH₂), 3.8 (t, 1H, α-hydrogen to other COOH), 4.1 (t, 2H, COO<u>CH₂</u>) and 11.2 (br s, 2H, 2 COOH)</u>	
12b	3430 (OH), 3220 (NH), 3006 (CH aromatic), 2930-2810 (CH ₂ aliphatic), 1730 (C=O) and 1285 (C-O)	0.9 (t, 3H, CH ₃ terminal CH ₃ of alkyl chain), 1.3 (m, 20H, CH ₂ of alkyl chain), 1.6 (s, 3H, CH ₃ of α-substituted ester), 2.1 (s, 1H, alcoholic OH), 3.3 (s, 2H, NH <u>CH₂</u>), 3.8 (br s, 1H, NH), 4.1 (t, 2H, <u>CH₂</u> -COOH), 6.5-7.8 (m, 4H, ArH) and 11.0 (s, 1H, COOH)	

Table 2. Spectral data of some synthesized compounds

solution was shaken and heated for 2 hr, then allowed to stand overnight at room temperature. Water was then added and the separated solid was crystalized using a suitable solvent to give **(2a-c)**.

2.2. General procedure of the reaction of epoxy fatty ester with amino acids

Triethylamine (1 mmole) dissolved in an aqueous ethanol solution (65 wt % ethanol) was added to amino acid (1 mmole) to protect (as a salt) the carboxyl group of the amino acid. The mixture was stirred at room temperature for 20 min. Subsequently, epoxy fatty ester 2 (1 mmole) was added using a dropper, and the mixture was stirred at 50 °C for 8hr or at 60 °C for one night. Then the triethylamine and ethanol were evaporated. The residue obtained was washed with water and petroleum ether, then dried under vacuum and crystalized using a suitable solvent to obtain (**3a-c** to **11a-c**).

2.3. Surface active properties

2.3.1. Surface and interfacial tension

Surface and interfacial tension were measured using Du-Nouy tensiometer (Findly., 1963) (Kruss,Type 8451),with 0.1 wt % aqueous solution at room temperature (25 °C).

2.3.2. Kraft point

The prepared amphoteric surfactants were measured as the temperature where 1 % dispersion becomes clear under gradual heating (Wiel et al., 1963).

2.3.3. Wetting time

Wetting time was determined by immersing a sample of cotton fabric in a 1.0 wt % aqueous solution of surfactants (Masuyama et al., 1987).

2.3.4. Foaming power

Foaming power was measured according to (Somaya et al., 1998). In this procedure a 25 ml solution (1.0 wt %) was shaken vigorously for 10 seconds in a 100 ml glass stopper, graduated cylinder, at 25 °C. the solution was allowed to stand. The foam height and foaming stability were measured.

2.3.5. Emulsification stability

Emulsification stability was tested using 10 ml of a 20 m mol. aqueous solution of surfactant and 5 ml of toluene at 40 °C. The emulsifying property was determined as the time its took for an aqueous volume separating from the emulsion layer to reach 9 ml counting from the moment of the cession shaking (El-Sawy et al., 1991).

2.3.6. Critical micelle concentration

(CMC) values for the prepared surfactants were determined by the electrical conductivity method (Takeshi., 1970).

2.3.7. Ca⁺⁺ stability

Calcium stability of compounds was determined as described according to (Bristiline et al., 1980).

2.4. Biodegradability test

Biodegradability Die-away test in river water of the prepared surfactants (1.0 wt %) was determined by the surface tension method (Eter et al., 1974) using Du Nouy Tensiometer (Kruss type 8451). Samples taken daily or even more frequently were filtered through Wattmann filter paper number (1) before measuring the surface tension. Surface tension measurements were made periodically each day, on each sample during the degradation test. Biodegradation percent (D) for each sample was calculated using the equation, D = $[(\gamma_t - \gamma_0)/(\gamma_{bt} - \gamma_0)] \times 100$ where γ_t = surface tension at time t, γ_0 = surface tension at zero time, γ_{bt} = surface tension of blank experiment at time t (without samples).

2.5. Antimicrobial activity

The antimicrobial activities of the surfactants were evaluated by the agar dilution method (El-Sukkary et al., 1987). Three kinds of Gram-positive bacterial strains, Stophylococcus Aureus; Bacillus Subtiles and Sarcina Lutea, three kinds of Gramnegative bacteria strains, Escherichia Coli, Salmonella Trphi and Pseudomonas Aeruginosa and six kinds of fungal strains, Candida Albicans, Saccharomyces Cerevisiae, Alternaria Humicala, Fusazium Oxysporum, Aspergillus Flavus and Microsporium Gypseum were used for the testes. Nutrient agar and Sabouraud dextrose agar were used for bacteria and fungi, respectively. In the screening test for antimicrobial activity, 0.4 % stock solutions were prepared by dissolving 40 mg of the test compound in 10 ml of distilled water or ethanol. The stock solutions were diluted in an orderly manner by successive piping of the solution in water containing nutrient agar or sabouraud dextrose agar to obtain 400, 200, 100, 50, 25, 10, 5, 2.5 and 1 ppm concentrations of the compound. After sterilization of the agar, the solutions were poured into sterile Petri dishes, allowed to harden, and were then individually inoculated with one drop of each suspension, each containing a separate test microorganism. The inoculated dishes were then inoculated at 37 °C for two days with bacteria strains and 25 °C for five days with fungal strains, and examined for the presence or absence of

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Compd	Surface Tension	Interfacial Tension	Kraft Point	Wetting time	Emulsion		power າ) 1%	Ca⁺⁺stability	Cmcx10 ⁻³	
3b328.02090300: 302202053803.33c368.525123350: 502252103503.44a338.21690280: 5515514914603.44b358.719115320: 2517015813503.44c379.023132360: 2019017312003.35a349.52680250: 1018016512403.45b3710.327110290: 2520018911503.75c3911.035135340: 222202059003.36a3311.442100286: 4018516312304.46b3512.043115305: 5520018412604.46c3712.548126330: 302302108503.47a316.74885254: 451481555606.7b337.050100280: 261651765005.47c357.555120320: 101881854504.48a328.71736227: 2114516415304.48b349.22242260: 39	Compd			°C 1%		stability (min.sec)	Intial		(ppm)	mole / I	
3c 36 8.5 25 123 $350:50$ 225 210 350 3.4 $4a$ 33 8.2 16 90 $280:55$ 155 149 1460 3.4 $4b$ 35 8.7 19 115 $320:25$ 170 158 1350 3.4 $4c$ 37 9.0 23 132 $360:20$ 190 173 1200 3.4 $5a$ 34 9.5 26 80 $250:10$ 180 165 1240 3.4 $5b$ 37 10.3 27 110 $290:25$ 200 189 1150 3.4 $5c$ 39 11.0 35 $340:22$ 202 900 3.4 $6a$ 33 11.4 42 100 $286:40$ 185 163 1230 4.4 $6c$ 37 12.5 48 126 $330:30$ 230 210 850 3.4 $6c$ 37 12.5 48 126 $330:30$ 230 210 850 3.4 $7a$ 31 6.7 48 85 $254:45$ 148 155 560 6.6 $7b$ 33 7.0 50 100 $280:26$ 165 176 500 54 $7c$ 35 7.5 55 120 $320:10$ 188 185 450 4.4 $8a$ 32 8.7 17 36 $227:21$ 145 164 1	3a	31	7.5	17	65	260: 40	200	190	450	3.9	
4a 33 8.2 16 90 $280:55$ 155 149 1460 3.4 $4b$ 35 8.7 19 115 $320:25$ 170 158 1350 3.4 $4c$ 37 9.0 23 132 $360:20$ 190 173 1200 3.3 $5a$ 34 9.5 26 80 $250:10$ 180 165 1240 3.4 $5b$ 37 10.3 27 110 $290:25$ 200 189 1150 3.4 $5c$ 39 11.0 35 135 $340:22$ 220 205 900 3.4 $6a$ 33 11.4 42 100 $286:40$ 185 163 1230 4.4 $6b$ 35 12.0 43 115 $305:55$ 200 184 1260 4.4 $6c$ 37 12.5 48 126 $330:30$ 230 210 850 3.4 $7a$ 31 6.7 48 85 $254:45$ 148 155 560 6.6 $7b$ 33 7.0 50 100 $280:26$ 165 176 500 5.4 $7a$ 31 6.7 17 36 $227:21$ 145 164 1530 4.4 $8a$ 32 8.7 17 36 $227:21$ 145 164 1530 4.4 $8b$ 34 9.2 22 42 $260:39$	3b	32	8.0	20	90	300: 30	220	205	380	3.7	
4b358.719115 $320:25$ 17015813503.44c379.023132 $360:20$ 19017312003.35a349.52680 $250:10$ 18016512403.45b3710.327110290:2520018911503.55c3911.035135340:222202059003.36a3311.442100286:4018516312304.36b3512.043115305:5520018412604.36c3712.548126330:302302108503.37a316.74885254:451481555606.7c357.555120320:101881854504.48a328.71736227:2114516415304.48b349.22242260:3915917914204.49a308.51530230:4721019012604.49b329.01631270:5022020511503.310a337.01332222:5019017413603.310b367.51935266:11200 <td>Зc</td> <td>36</td> <td>8.5</td> <td>25</td> <td>123</td> <td>350: 50</td> <td>225</td> <td>210</td> <td>350</td> <td>3.4</td>	Зc	36	8.5	25	123	350: 50	225	210	350	3.4	
4c 37 9.0 23 132 $360:20$ 190 173 1200 3.3 $5a$ 34 9.5 26 80 $250:10$ 180 165 1240 3.3 $5b$ 37 10.3 27 110 $290:25$ 200 189 1150 3.3 $5c$ 39 11.0 35 135 $340:22$ 220 205 900 3.3 $6a$ 33 11.4 42 100 $286:40$ 185 163 1230 4.3 $6b$ 35 12.0 43 115 $305:55$ 200 184 1260 4.3 $6c$ 37 12.5 48 126 $330:30$ 230 210 850 3.3 $7a$ 31 6.7 48 85 $254:45$ 148 155 560 $6.$ $7b$ 33 7.0 50 100 $280:26$ 165 176 500 5.1 $7c$ 35 7.5 55 120 $320:10$ 188 185 450 4.4 $8a$ 32 8.7 17 36 $227:21$ 145 164 1530 4.4 $8a$ 32 8.7 17 36 $227:21$ 145 164 1530 4.4 $9a$ 30 8.5 15 30 $230:47$ 210 190 1300 4.4 $9a$ 30 8.5 15 30 $230:47$ 2	4a	33	8.2	16	90	280: 55	155	149	1460	3.8	
5a 34 9.5 26 80 $250:10$ 180 165 1240 34 $5b$ 37 10.3 27 110 $290:25$ 200 189 1150 3.4 $5c$ 39 11.0 35 135 $340:22$ 220 205 900 3.4 $6a$ 33 11.4 42 100 $286:40$ 185 163 1230 4.4 $6c$ 37 12.5 48 126 $330:30$ 230 210 850 34 $6c$ 37 12.5 48 126 $330:30$ 230 210 850 34 $7a$ 31 6.7 48 85 $254:45$ 148 155 560 $6.$ $7b$ 33 7.0 50 100 $280:26$ 165 176 500 54 $7c$ 35 7.5 55 120 $320:10$ 188 185 450	4b	35	8.7	19	115	320: 25	170	158	1350	3.6	
5b3710.327110290: 2520018911503.45c3911.035135 $340: 22$ 2202059003.36a3311.442100286: 4018516312304.36b3512.043115305: 5520018412604.36c3712.548126330: 302302108503.37a316.74885254: 451481555606.77b337.050100280: 261651765005.47c357.555120320: 101881854504.48a328.71736227: 2114516415304.38b349.22242260: 3915917914204.39a308.51530230: 4721019012604.49b329.01631270: 5022020511503.310a337.01332222: 5019017413603.310b367.51935265: 1120018312403.410c388.02235300: 3820519111203.310b367.51935265: 17 <td>4c</td> <td>37</td> <td>9.0</td> <td>23</td> <td>132</td> <td>360: 20</td> <td>190</td> <td>173</td> <td>1200</td> <td>3.3</td>	4c	37	9.0	23	132	360: 20	190	173	1200	3.3	
5c 39 11.0 35 135 $340:22$ 220 205 900 33 $6a$ 33 11.4 42 100 $286:40$ 185 163 1230 43 $6b$ 35 12.0 43 115 $305:55$ 200 184 1260 43 $6c$ 37 12.5 48 126 $330:30$ 230 210 850 33 $7a$ 31 6.7 48 85 $254:45$ 148 155 560 $6.$ $7b$ 33 7.0 50 100 $280:26$ 165 176 500 5.1 $7c$ 35 7.5 55 120 $320:10$ 188 185 450 4.1 $8a$ 32 8.7 17 36 $227:21$ 145 164 1530 4.2 $8b$ 34 9.2 22 42 $260:39$ 159 179 1420 4.2 $8c$ 36 10.0 22 48 $300:38$ 183 196 1300 4.2 $9a$ 30 8.5 15 30 $230:47$ 210 190 1260 4.2 $9b$ 32 9.0 16 31 $270:50$ 220 205 1150 3.3 $10a$ 33 7.0 13 32 $222:50$ 190 174 1360 3.3 $10b$ 36 7.5 19 35 $265:11$ 200 <	5a	34	9.5	26	80	250: 10	180	165	1240	3.6	
6a3311.442100286: 4018516312304.36b3512.043115305: 5520018412604.36c3712.548126330: 302302108503.37a316.74885254: 451481555606.7b337.050100280: 261651765005.17c357.555120320: 101881854504.48a328.71736227: 2114516415304.38b349.22242260: 3915917914204.39a308.51530230: 4721019012604.39b329.01631270: 5022020511503.310a337.01332222: 5019017413603.310b367.51935265: 1120018312403.310b367.51935265: 1120018213603.311a288.61635226: 1718016614203.311b309.02040263: 3320018213603.311b309.02040263: 33	5b	37	10.3	27	110	290: 25	200	189	1150	3.4	
6b 35 12.0 43 115 $305:55$ 200 184 1260 4.3 $6c$ 37 12.5 48 126 $330:30$ 230 210 850 3.3 $7a$ 31 6.7 48 85 $254:45$ 148 155 560 6.7 $7b$ 33 7.0 50 100 $280:26$ 165 176 500 5.1 $7c$ 35 7.5 55 120 $320:10$ 188 185 450 4.4 $8a$ 32 8.7 17 36 $227:21$ 145 164 1530 4.4 $8b$ 34 9.2 22 42 $260:39$ 159 179 1420 4.7 $8c$ 36 10.0 22 48 $300:38$ 183 196 1300 4.7 $9a$ 30 8.5 15 30 $230:47$ 210 190 1260 4.7 $9b$ 32 9.0 16 31 $270:50$ 220 205 1150 3.3 $10a$ 33 7.0 13 32 $222:50$ 190 174 1360 3.3 $10b$ 36 7.5 19 35 $265:11$ 200 183 1240 3.3 $10b$ 36 7.5 19 35 $226:17$ 180 166 1420 3.3 $10b$ 36 7.5 19 35 $226:17$ 1	5c	39	11.0	35	135	340: 22	220	205	900	3.2	
6c 37 12.5 48 126 $330: 30$ 230 210 850 3.3 $7a$ 31 6.7 48 85 $254: 45$ 148 155 560 6.7 $7b$ 33 7.0 50 100 $280: 26$ 165 176 500 5.0 $7c$ 35 7.5 55 120 $320: 10$ 188 185 450 4.0 $8a$ 32 8.7 17 36 $227: 21$ 145 164 1530 4.3 $8b$ 34 9.2 22 42 $260: 39$ 159 179 1420 4.7 $8c$ 36 10.0 22 48 $300: 38$ 183 196 1300 4.7 $9a$ 30 8.5 15 30 $230: 47$ 210 190 1260 4.7 $9b$ 32 9.0 16 31 $270: 50$ 220 205 1150 3.7 $9c$ 34 9.5 20 36 $310: 11$ 235 214 950 3.7 $10a$ 33 7.0 13 32 $222: 50$ 190 174 1360 3.7 $10b$ 36 7.5 19 35 $265: 11$ 200 183 1240 3.7 $10b$ 36 7.5 19 35 $226: 17$ 180 166 1420 3.7 $11a$ 28 8.6 16 35 $220: 17$	6a	33	11.4	42	100	286: 40	185	163	1230	4.3	
7a 31 6.7 48 85 $254:45$ 148 155 560 $6.$ $7b$ 33 7.0 50 100 $280:26$ 165 176 500 5.0 $7c$ 35 7.5 55 120 $320:10$ 188 185 450 4.0 $8a$ 32 8.7 17 36 $227:21$ 145 164 1530 4.9 $8b$ 34 9.2 22 42 $260:39$ 159 179 1420 4.7 $8c$ 36 10.0 22 48 $300:38$ 183 196 1300 4.7 $9a$ 30 8.5 15 30 $230:47$ 210 190 1260 4.7 $9b$ 32 9.0 16 31 $270:50$ 220 205 1150 3.16 $9c$ 34 9.5 20 36 $310:11$ 235 214 950 3.7 $10a$ 33 7.0 13 32 $222:50$ 190 174 1360 3.9 $10b$ 36 7.5 19 35 $265:11$ 200 183 1240 3.16 $10b$ 36 7.5 19 35 $226:17$ 180 166 1420 3.16 $10b$ 36 7.5 19 39 $227:21$ 180 166 1420 3.16 $11a$ 28 8.6 16 35 $226:17$ 1	6b	35	12.0	43	115	305: 55	200	184	1260	4.2	
7b 33 7.0 50 100 280: 26 165 176 500 54 7c 35 7.5 55 120 320: 10 188 185 450 44 8a 32 8.7 17 36 227: 21 145 164 1530 4.3 8b 34 9.2 22 42 260: 39 159 179 1420 4.3 8c 36 10.0 22 48 300: 38 183 196 1300 4.3 9a 30 8.5 15 30 230: 47 210 190 1260 4.3 9b 32 9.0 16 31 270: 50 220 205 1150 3.3 10a 33 7.0 13 32 222: 50 190 174 1360 3.4 10b 36 7.5 19 35 265: 11 200 183 1240	6c	37	12.5	48	126	330: 30	230	210	850	3.5	
7b 33 7.0 50 100 $280:26$ 165 176 500 5.0 $7c$ 35 7.5 55 120 $320:10$ 188 185 450 4.0 $8a$ 32 8.7 17 36 $227:21$ 145 164 1530 4.3 $8b$ 34 9.2 22 42 $260:39$ 159 179 1420 4.3 $8c$ 36 10.0 22 48 $300:38$ 183 196 1300 4.3 $9a$ 30 8.5 15 30 $230:47$ 210 190 1260 4.3 $9b$ 32 9.0 16 31 $270:50$ 220 205 1150 3.3 $9c$ 34 9.5 20 36 $310:11$ 235 214 950 3.3 $10a$ 33 7.0 13 32 $222:50$ 190 174 1360 3.9 $10b$ 36 7.5 19 35 $265:11$ 200 183 1240 3.4 $10c$ 38 8.0 22 35 $300:38$ 205 191 1120 3.4 $11b$ 30 9.0 20 40 $263:33$ 200 182 1360 3.4 $11b$ 30 9.0 20 40 $263:33$ 200 182 1360 3.4 $11b$ 30 9.4 23 45 $290:22$ 21	7a	31	6.7	48	85	254: 45	148	155	560	6.1	
8a 32 8.7 17 36 $227: 21$ 145 164 1530 4.9 $8b$ 34 9.2 22 42 $260: 39$ 159 179 1420 4.9 $8c$ 36 10.0 22 48 $300: 38$ 183 196 1300 4.9 $9a$ 30 8.5 15 30 $230: 47$ 210 190 1260 4.9 $9b$ 32 9.0 16 31 $270: 50$ 220 205 1150 3.9 $9c$ 34 9.5 20 36 $310: 11$ 235 214 950 3.9 $9c$ 34 9.5 20 36 $310: 11$ 235 214 950 3.9 $10a$ 33 7.0 13 32 $222: 50$ 190 174 1360 3.9 $10b$ 36 7.5 19 35 $265: 11$ 200 183 1240 3.9 $10c$ 38 8.0 22 35 $300: 38$ 205 191 1120 3.9 $11a$ 28 8.6 16 35 $226: 17$ 180 166 1420 3.9 $11b$ 30 9.0 20 40 $263: 33$ 200 182 1360 3.9 $11c$ 32 9.4 23 45 $290: 22$ 210 190 1300 3.9 $12b$ 34 9.2 22 45 $260: 3$		33	7.0	50	100	280: 26	165	176	500	5.6	
8b 34 9.2 22 42 260: 39 159 179 1420 4. 8c 36 10.0 22 48 300: 38 183 196 1300 4. 9a 30 8.5 15 30 230: 47 210 190 1260 4. 9b 32 9.0 16 31 270: 50 220 205 1150 3. 9c 34 9.5 20 36 310: 11 235 214 950 3. 10a 33 7.0 13 32 222: 50 190 174 1360 3. 10b 36 7.5 19 35 265: 11 200 183 1240 3.0 10c 38 8.0 22 35 300: 38 205 191 1120 3.3 11a 28 8.6 16 35 226: 17 180 166 1420 3.4 11b 30 9.0 20 40 263: 33 200	7c	35	7.5	55	120	320: 10	188	185	450	4.6	
8c 36 10.0 22 48 300: 38 183 196 1300 4. 9a 30 8.5 15 30 230: 47 210 190 1260 4. 9b 32 9.0 16 31 270: 50 220 205 1150 3. 9c 34 9.5 20 36 310: 11 235 214 950 3. 10a 33 7.0 13 32 222: 50 190 174 1360 3. 10b 36 7.5 19 35 265: 11 200 183 1240 3. 10c 38 8.0 22 35 300: 38 205 191 1120 3. 11a 28 8.6 16 35 226: 17 180 166 1420 3.4 11b 30 9.0 20 40 263: 33 200 182 1360	8a	32	8.7	17	36	227: 21	145	164	1530	4.9	
9a 30 8.5 15 30 230: 47 210 190 1260 4. 9b 32 9.0 16 31 270: 50 220 205 1150 3. 9c 34 9.5 20 36 310: 11 235 214 950 3. 10a 33 7.0 13 32 222: 50 190 174 1360 3.9 10b 36 7.5 19 35 265: 11 200 183 1240 3.4 10c 38 8.0 22 35 300: 38 205 191 1120 3.3 11a 28 8.6 16 35 226: 17 180 166 1420 3.4 11b 30 9.0 20 40 263: 33 200 182 1360 3.4 11c 32 9.4 23 45 290: 22 210 190 1300 3.5 12a 32 8.7 19 39 227: 21 155	8b	34	9.2	22	42	260: 39	159	179	1420	4.7	
9b 32 9.0 16 31 270: 50 220 205 1150 33 9c 34 9.5 20 36 310: 11 235 214 950 33 10a 33 7.0 13 32 222: 50 190 174 1360 33 10b 36 7.5 19 35 265: 11 200 183 1240 30 10c 38 8.0 22 35 300: 38 205 191 1120 33 11a 28 8.6 16 35 226: 17 180 166 1420 34 11b 30 9.0 20 40 263: 33 200 182 1360 33 11c 32 9.4 23 45 290: 22 210 190 1300 33 12a 32 8.7 19 39 227: 21 155 168 1530	8c	36	10.0	22	48	300: 38	183	196	1300	4.1	
9c 34 9.5 20 36 310: 11 235 214 950 3.5 10a 33 7.0 13 32 222: 50 190 174 1360 3.5 10b 36 7.5 19 35 265: 11 200 183 1240 3.6 10c 38 8.0 22 35 300: 38 205 191 1120 3.5 11a 28 8.6 16 35 226: 17 180 166 1420 3.6 11b 30 9.0 20 40 263: 33 200 182 1360 3.5 11c 32 9.4 23 45 290: 22 210 190 1300 3.5 12a 32 8.7 19 39 227: 21 155 168 1530 5.7 12b 34 9.2 22 45 260: 39 160 172 1420 <td>9a</td> <td>30</td> <td>8.5</td> <td>15</td> <td>30</td> <td>230: 47</td> <td>210</td> <td>190</td> <td>1260</td> <td>4.1</td>	9a	30	8.5	15	30	230: 47	210	190	1260	4.1	
10a 33 7.0 13 32 222: 50 190 174 1360 3.9 10b 36 7.5 19 35 265: 11 200 183 1240 3.9 10c 38 8.0 22 35 300: 38 205 191 1120 3.9 11a 28 8.6 16 35 226: 17 180 166 1420 3.9 11b 30 9.0 20 40 263: 33 200 182 1360 3.9 11c 32 9.4 23 45 290: 22 210 190 1300 3.9 12a 32 8.7 19 39 227: 21 155 168 1530 5.7 12b 34 9.2 22 45 260: 39 160 172 1420 5.4	9b	32	9.0	16	31	270: 50	220	205	1150	3.8	
10b367.51935265: 1120018312403.610c388.02235300: 3820519111203.311a288.61635226: 1718016614203.411b309.02040263: 3320018213603.411c329.42345290: 2221019013003.412a328.71939227: 2115516815305.412b349.22245260: 3916017214205.4	9c	34	9.5	20	36	310: 11	235	214	950	3.7	
10c388.02235300: 3820519111203.311a288.61635226: 1718016614203.411b309.02040263: 3320018213603.411c329.42345290: 2221019013003.412a328.71939227: 2115516815305.412b349.22245260: 3916017214205.4	10a	33	7.0	13	32	222: 50	190	174	1360	3.9	
11a 28 8.6 16 35 226: 17 180 166 1420 3.4 11b 30 9.0 20 40 263: 33 200 182 1360 3.4 11c 32 9.4 23 45 290: 22 210 190 1300 3.4 12a 32 8.7 19 39 227: 21 155 168 1530 5.4 12b 34 9.2 22 45 260: 39 160 172 1420 5.4	10b	36	7.5	19	35	265: 11	200	183	1240	3.6	
11b 30 9.0 20 40 263: 33 200 182 1360 3.4 11c 32 9.4 23 45 290: 22 210 190 1300 3.4 12a 32 8.7 19 39 227: 21 155 168 1530 5.7 12b 34 9.2 22 45 260: 39 160 172 1420 5.7	10c	38	8.0	22	35	300: 38	205	191	1120	3.3	
11c 32 9.4 23 45 290: 22 210 190 1300 3.5 12a 32 8.7 19 39 227: 21 155 168 1530 5.5 12b 34 9.2 22 45 260: 39 160 172 1420 5.5	11a	28	8.6	16	35	226: 17	180	166	1420	3.8	
12a 32 8.7 19 39 227: 21 155 168 1530 5.7 12b 34 9.2 22 45 260: 39 160 172 1420 5.7	11b	30	9.0	20	40	263: 33	200	182	1360	3.5	
12b 34 9.2 22 45 260: 39 160 172 1420 5.3	11c	32	9.4	23	45	290: 22	210	190	1300	3.1	
	12a	32	8.7	19	39	227: 21	155	168	1530	5.7	
	12b	34	9.2	22	45	260: 39	160	172	1420	5.2	
120 36 10.0 25 48 300:38 165 206 1300 4.0	12c	36	10.0	25	48	300: 38	165	206	1300	4.6	

Table 3. Surface properties of amphoteric compounds

Error of measurements was: Surface and interfacial tensions = ± 0.1 dynes/cm.

Kraft point = $\pm 1 \, ^{\circ}$ C Foam height = $\pm 2 \, \text{mm}$

Wetting time = ± 1 sec Emulsion stability = ± 1 min

growth. Antimicrobial activities are represented in terms of minimum inhibitory concentrations (MIC).

3. RESULTS AND DISCUSSION

A number of amphoteric surfactants was synthesized by the reaction of alkyl ester epoxides and amino acids (glycine, alanine, valine, isoleucine, phenylalanine, tyrosine, serine, threonine, aspartic and anthranilic acid). This group can be prepared

from readily accessible starting materials without expensive reagents or special equipment. In general, the synthetic procedures gave relatively high yields in two simple synthetic steps.

3.1. Surface active properties

The surface properties (surface and interfacial tension, Kraft point, wetting power, foaming properties, emulsifying power and critical micelle concentration) of well purified compounds were investigated in distilled water. These surfactants show relatively high surface activity and a comparative study between the structure and the result was made.

3.1.1. Surface and interfacial tension

The measurements of the individual compounds are listed in (Table 3). The results indicated that, a linear relationship was observed between surface and interfacial tension and alkyl chain length (as the number of carbon atoms in the alkyl chain increases the surface and interfacial tension increases).

3.1.2. Kraft point

The Kraft point of a surfactant molecule is the temperature at which 1% dispersion solution becomes clear under gradual heating. The Kraft points of all synthesized amphoteric surfactants are also summarized in (Table 3). Although the Kraft points increase in the order $C_{18} > C_{12} > C_8$ no remarkable difference among three homologues was observed. However, as the molecular weight of an amino acid increases the Kraft point increases.

3.1.3. Wetting power

The wetting time of the tested amphoteric surface active agents was determined by calculating the

Compds.	1st day	2nd day	3rd day	4th day	5th day	6th day	7th day
Зa	44	52	60	71	84	_	-
Зb	41	49	45	65	77	92	-
Зc	38	45	51	62	70	84	-
4a	45	55	62	69	78	88	97
4b	41	50	58	66	75	85	-
4c	37	45	54	63	71	83	91
5a	41	51	64	75	90	_	-
5b	38	46	58	72	87	93	-
5c	35	42	53	67	82	90	-
6a	43	50	63	75	92	_	-
6b	39	47	58	71	88	93	-
6c	37	44	54	68	75	89	94
7a	40	49	58	69	82	98	95
7b	37	46	55	64	79	84	92
7c	35	42	51	60	74	86	92
8a	41	55	66	77	89	_	-
8b	39	53	62	72	86	93	-
8c	33	50	58	68	83	89	95
9a	49	56	67	81	90	_	-
9b	42	52	64	75	87	94	-
9c	39	47	59	69	79	89	96
10a	48	58	69	80	93	_	-
10b	45	54	65	77	89	94	-
10c	41	51	61	73	84	90	-
11a	50	53	64	76	89	_	-
11b	44	50	60	71	86	92	-
11c	38	46	55	66	79	89	97
12a	47	55	66	77	81	89	99
12b	43	53	62	72	79	86	93
12c	39	50	58	68	72	83	90

Table 4. Biodegradability of Amphoteric Products

Error of calculations was: Biodegradation rate = \pm 0.5 %.

sinking time in seconds of a grey cotton cloth in the surfactant solution. The synthesized surfactants showed good performance for wetting power (shorter sinking time). Compounds (8a, 9a-c, 10a-c and 11a) recorded excellent wetting power which makes them useful for extensive applications in the textile industry.

3.1.4. Foaming power

The foaming properties of all the synthesized surfactants were measured by the Ross and Miles method (Ross et al., 1941). Amphoteric surfactants showed good foam production as well as better foam stability above the (CMC). On the other hand, amphoteric surfactants containing an aromatic ring such as (**7a-c**, **8a-c** and **12a-c**) showed poor foaming properties. Extremely low foaming can probably be ascribed to the low solubility (low hydrophilicity) of the compounds in water. Table 3 shows the foam production and foam stability of all the synthesized amphoteric surfactants.

3.1.5. Emulsifying power

Emulsification is one of the most important properties of surfactants. In many textile processes such as scouring and dyeing, it is necessary to introduce surfactants into a bath to remove oily impurities from the fibers. On the other hand, amphoteric surfactants with good emulsion stability have been used in such fields as shampoos and cosmetics, emulsion paints and in the textile industry. The emulsification power is determined and listed in (Table 3). The results reflect the fact that as the alkyl chain length increases the emulsifying power increases.

3.1.6. Ca⁺⁺ - Stability

The calcium ion stability results of amphoteric surfactants are shown in (Table 3). High calcium stability values show that the prepared surfactants can be used in hard water. The calcium stability

 Table 5.

 Antimicrobial activity of amphoteric compounds.

Compds	Stophylococcus Aureus <i>MIC</i>	Bacillus Subtiles <i>MIC</i>	Sarcina Lutea <i>MIC</i>	Escherichia Coli <i>MIC</i>	Salmonella Trphi <i>MIC</i>	Pseudomonas Aeruginosa <i>MIC</i>	Candida Albicans <i>MIC</i>	Saccharomyces Cerevisiae <i>MIC</i>	Alternaria Humicala <i>MIC</i>	Fusazium Oxysporum <i>MIC</i>	Asperdillus Flavus <i>MIC</i>	Microsporium Gypseum <i>MIC</i>
3a	> 400	100	50	10	200	50	25	>400	2.5	100	200	400
3b	200	25	50	10	400	100	10	200	10	100	100	400
3c	100	50	100	5	100	100	10	200	10	50	50	>400
4a	400	25	50	10	200	50	25	100	2.5	100	100	400
4b	>400	25	50	10	400	100	10	50	10	100	25	>400
4c	200	50	25	5	100	100	10	50	2.5	50	50	200
5a	100	50	200	10	200	50	2.5	100	2.5	50	50	200
5b	50	25	50	10	200	100	1	50	2.5	25	25	200
5c	25	50	100	5	100	100	2.5	100	2.5	50	50	50
6a	100	100	200	10	50	50	25	100	2.5	100	100	200
6b	25	25	50	10	50	100	10	50	2.5	50	50	200
6c	10	50	100	5	25	100	10	100	1	50	50	50
7a	10	25	50	10	50	50	25	100	10	50	100	200
7b	1	10	50	10	25	100	10	10	2.5	25	50	100
7c	2.5	2.5	25	5	10	100	1	2.5	2.5	10	50	50
8a	100	100	200	10	200	50	25	200	2.5	100	200	50
8b	50	25	50	10	400	100	10	200	2.5	100	100	200
8c	25	50	100	5	100	100	10	100	2.5	50	50	50
9a	> 400	100	200	10	200	50	25	>400	10	100	200	200
9b	200	25	50	10	400	100	10	200	2.5	100	100	200
9c	200	50	100	5	100	100	10	100	2.5	50	50	>400
10a	50	100	200	10	50	50	25	>400	50	100	200	200
10b	50	25	50	10	50	100	10	400	10	100	100	50
10c	25	50	100	5	25	100	10	400	10	50	50	50
11a	50	100	200	10	200	50	25	50	100	100	200	400
11b	50	25	50	10	400	100	10	10	50	100	100	>400
11c	10	50	100	5	100	100	10	2.5	50	50	50	400
12a	> 400	100	200	10	200	50	25	10	2.5	100	200	50
12b	400	25	50	10	400	100	10	2.5	2.5	100	100	200
12c	100	50	100	5	100	100	10	2.5	2.5	50	50	50

Origin of cultures: Botany Department, Faculty of Science, Benha University, Egypt.

decreased with the increase in the molecular weight of the hydrophobic part of the surfactant under the conditions of constant temperature.

3.1.7. Critical micelle concentration (CMC)

The critical micelle concentration values of the prepared amphoteric surfactants were determined using the electrical conductivity method. The results showed that as the hydrophobic part increases the CMC values decrease, this means that aliphatic compounds exhibit larger intermolecular hydrophilic interactions, making it easier for them to form aggregates in water than those which contain an aromatic ring. Also, the results of CMC measurements reflect the fact that as the length of alkyl chain increases the CMC decreases.

3.2. Biodegradability

The biodegradability of the tested compounds after one week was determined and listed in (Table 4). Each experiment was repeated three times, and the results are reported as averages of three values. For example, compound (**9a**) was 100% degraded in 6 days and 81% degraded in 4 days which makes it an excellent biodegradable surface active agent.

3.3. Antimicrobial activity

All the synthesized surface active agents were screened for antimicrobial activity against Grampositive and Gram-negative bacterial strains and fungal strains. The minimum inhibitory concentrations (MIC) for the compounds tested are given in (Table 5). Compounds (**5a,b**, **6b,c** and **7a,b,c**) showed a broad spectrum of antimicrobial activity. On the other hand compounds (**3c**, **4b**, **9c**, and **11b,c**) showed no significant antimicrobial activities.

BIBLIOGRAPHY

Amin. M. S., Eissa. A. M. F, Shaaban. A. F., El-Sawy. A. A. and El-Sayed. R. 2004 "New heterocycles having a double characters as antimicrobial and surface active agents.Part 1: Nonionic compounds from fatty acid isothiocyanate". *Olaj Szappan, Kozmetika* 53,124-128.

Andersen. D. L. 1957 J. Am. Oil. Chem. Soc. 34, 188-190. Bluestein. C., Rosenblatt. W., Clark. J and Stefcik. A.

- (1973) J. Am. Oil. Chem. Soc. 50, 532-535.
- Bristiline R. G., Maurer. E. W., Smith. F. D and Linfield. W. M. (1980) *J. Am. Oil. Chem. Soc.* **75**, 98-102.
- Christophe. D., Fatima. A., Karine. V., Guita. E. and Isabelle. R. (2002) *Longmuir.* **18**, 10168-10175.

- Eissa. A. M. F. (2002) "Anionic surface active agents from fatty acid hydrazides containing heterocyclic moiety". J. Olaj Szappan Kozmetika, 51, 155-161.
- Eissa. A. M. F and Osman. F. (1996) "Cationic surface active agents". *Bull. N R C. Egypt.* **21** (3), 245-252.
- Eissa. A. M. F. (1995) "Amphoteric surface active agents". Grasas Y Aceites, **46** (4-5), 240-4.
- Eissa. A. M. F and Ahmed. M. H. M. (2003) "Nonionic surface active agents containing heterocyclic moiety". Olaj Szappan Kozmetika 52, 11-17.
- El-Dougdoug. W. I. A., Hebash. K. A. H and Eissa. A. M. F. (2001) "Cationic surfactants from local magnifera indica fat". J. Olaj Szappan Kozmetika. 50 (4) 143-148
- El-Sawy, A. A., Essawy, S. A., El-Sukkary, M. M and Eissa.
 A. M. F. (1992) "Surfactants from 2-hydroxy fatty acids I. Sulphonation products of 2-hydroxy fatty acids, esters, diols and alkanolamines". J. Serb. Chem. Soc. 56, 25-28.
- El-Sukkary. M. A., El-Sawy. A. A and El-Dib. F. (1987) "Synthetic Detergents from Crude rice bran oil". *Hungarian Journal of Industrial Chemistry* **15**, 317-320.
- Eter, E. T., Richard. R. E. and Darid. A. (1974) "Biodegradable surfactants derived from corn starch". *J. Am. Oil Chem. Soc.* **51**, 486 - 494.
- Findly. A. (1963) "Practical physical chemistry". 6th Ed. *Longmans, London.* 1040.
- Hikota. T and Moerugo. K. (1979). J. Am. Oil. Chem. Soc. 56 537-541.
- Herrmann. K. W. (1962). J. Phys. Chem. 66, 295-298.
- Hironari. F. and Kimihiro. M. (2002) *Jpn. Kokai Tokkyo Koho.* **26**, 9-13.
- Klrvens. H. B. (1953). J. Am. Oil. Chem. Soc. 30, 74-76.
- Masuyama. A., Akiyama. K and Okahara. M. (1987) "Surface active hydroxamic acid. II. Comparison of surface properties of hydroxamic acids with ketones and methyl esters with similar hydrophilic and lipophilic structure". J. Am. Oil. Chem. Soc. 64, 1040-1043.
- Infante. M. R., Perez. L., Pinazo. A., Clapes. P and Moran. C. (2003). Surfactant Science Series: Novel surfactants. 114, 193-215
- Marion. H., Deisenroth. T and Jemnings. J. (2002). Mueller, Karl Friedrich. 15, 42-47.
- Nasreddine. M., Szonyi. S and Cambon. A. (1993) *J. Am. Oil. Chem. Soc.* **70** (1),105-107.
- Somaya. A. R, Eissa. A. M. F, Nadia. A and Ahmad. M. N. (1998) "Synthesis and characterization of some peptides having surface activity using polyethylene glycol". J. Pharm. Sci. 7, 27-32.
- Ross. J and Miles. G. (1941) J. Oil and Soap. 18, 99-102.
- Takeshi. H. (1970) Bull. Chem. Soc, **43**, 2236-2239.
- Tokiwa, F and Ohki. K. (1967) *J. Phys. Chem.* **71**, 1824-1827.
- Wiel, J. K., Smith, F. D., Stirton, A. J. and Bistine, R. G. (1963). "Long chain alkane-sulphonates and 1hydroxy-2-alkanesulphonates: Structure and property relations" *J. Am. Oil. Chem. Soc.* **40**, 538-541.

Recibido: Mayo 2005 Aceptado: Marzo 2006