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RESUMEN 

Las rutas de los hidroperóxidos de ácidos grasos en 
plantas. Una revisión. 

El presente artículo se centra en las rutas de los hidroperó
xidos de ácidos grasos, principalmente la hidroperóxido liasa y la 
hidroperóxido dehidrasa. Se presenta para cada enzima, la defi
nición, distribución y localización subcelular. 

Se da atención particular a los mecanismos de reacción y a 
la especificidad de sustrato. 

También se discuten los papeles fisiológicos de los produc
tos de reacción. 

PALABRAS-CLAVE: Hidroperóxido deliidrasa (ruta) -
¡Hidroperóxido liasa (ruta) - Planta - Revisión (artículo). 

SUMMARY 

Fatty acid hydroperoxides pathways in plants. A review. 

The present paper focusses on the fatty acid hydroperoxides 
pathways, mainly hydroperoxide lyase and hydroperoxide 
dehydrase. For each enzyme, the definition, occurrence and 
subcellular localization is presented. Particular attention is given 
to reaction mecanisms and to substrate specificity. Physiological 
roles of reaction products are also discussed. 

KEY-WORDS: Hydroperoxide dehydrase (pathway) -
Hydroperoxide lyase (pathway) - Plant - Review (paper). 

INTRODUCTION 

Fatty acid hydroperoxides are key components 
formed by the action of lipoxygenase (E.G. 1.13.11.12) 
on 1-Z, 4-Z pentadiene containing fatty acids (mainly 
linoleic and linolenic acids in plants). Depending on the 
origin of the lipoxygenase and on the reaction 
conditions, variable amounts of 13 and/or 9 
hydroperoxides are formed. The hydroperoxides can 
be further degraded in a variety of products involved in 
essential physiological roles in plants (jasmonic acid, 
traumatine) or responsible of the caractehstic green 
notes of plants and fruits (C-6 or C-9 aldehydes and 
alcohols). Two main pathways are described: the 
hydroperoxide lyase one leads to aldehydes and oxo-

acids synthesis and the dehydrase one which 
furnishes a, y-cetols and a cyclic compound. Other 
enzymatic conversions of fatty acid hydroperoxides 
exist in some plants (divinyl ethers synthesis, 
hydroperoxide isomerase and hydroperoxide dependant 
peroxygenase and epoxygenase), they are also 
presented here. 

1. HYDROPEROXIDE LYASE PATHWAY 

1.1. Definition 

Hydroperoxide lyase catalyzes the cleavage of 
linoleic and linolenic acid hydroperoxides into 
aldehydes and to-oxo-acids. The break takes place 
between the carbon which contains the hydroperoxide 
group and the proximate ethylenic carbon. The figure 1 
represents the action of hydroperoxide lyase on 9 and 
13 hydroperoxide of linolenic and linoleic acids (Martini 
and lacazio, 1995). 

13-hvdroperoxilinoleic acid 

OOH 

13-hvdroperoxilinolemc acid 

12-oxo-9-Z-dodecenoic acid 

9-hYdroperoxilinoleic acid 9-hvdroperoxilinoienic acid 
OOH 

9-0X0- nonanoic acid 3-Z, 6Z-nonadienal 

Figure 1 
Hydroperoxide degradation by hydroperoxide lyase 

(Martini and lacazio, 1995). 
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1.2. Occurence 

Hydroperoxide lyase was first suspected in banana 
by TressI and Drawert (1973) but these authors were 
unable to isolate the enzyme system responsible for 
the production of aldehydes. This last system was 
demonstrated later in watermelon seedlings (Vick and 
Zimmerman, 1976) and in cucumber fruits (Galliard 
and Phillips, 1976). The enzyme was also identified in 
alfalfa seedlings (Sekiya et al., 1979), soybean seeds 
(Matoba et al., 1985), tomato fruits (Galliard et al., 
1977), pear fruits (Kim and Grosch, 1981), apple fruits 
(Schreier and Lorenz, 1982), cultured tobacco cells 
(Sekyia etal., 1984), kidney bean leaves (Matthew and 
Galliard, 1978), spinach leaves chloroplasts (Vick and 
Zimmerman, 1987), tea leaves chloroplasts (Hatanaka 
et al., 1982) and green bell pepper fruits (Shibata et 
al., 1995a). If we add to this list the study of Sekyia et 
al. (1983) which reveals variable amounts of 
hydroperoxide lyase activity in 28 different plant 
leaves, we can conclude that the enzyme is 
widespread in the plant kingdom. 

The enzyme is found in green and non-green 
tissues and is located in different organs such as 
leaves, roots, cotyledons, seeds and fruits. 

1.3. Subcellular localisation 

Hydroperoxide lyase is a membrane-bound 
enzyme requiring detergent solubilization, usually 
Triton X-100 (Gardner, 1991). In green tissues, 
chloroplast thylakoid membranes appear to be the 
major site of location (Hatanaka et al., 1982; Gotz-
Schmidt et al., 1986; Vick et Zimmerman, 1987, 
Gardner, 1991). In non-green tissue, other sites of 
location are described. Indeed, in cucumber fruits, 
Wardale et al. (1978) determine that the enzyme was 
present in plasma and golgi membranes and in 
endoplasmic reticulum. In the peel of the fruit, the lyase 
was located in chloroplasts. In green bell pepper fruits 
(Shibata et al., 1995a) the activity is found in outer 
parenchymal cells of the pericarp where most of the 
chloroplasts of the fruit are located. 

1.4. Properties 

The optimum pH ranges from 5.5 for green bell 
pepper fruits (Shibata et al., 1995a) and tomato fruits 
(Schreier and Lorenz, 1982) to 8 for cucumber 
cotyledons (Matsui et ai, 1989). Hydroperoxide lyase 
from pear fruits (Kim et Grosch, 1981), tea leaves 
(Matsui, 1991) and soybean cotyledons (Olias et ai, 
1990) works at neutral pH.The pi of the enzyme in one 
isoform of green bell pepper fruits is 8.3 (Shibata etal., 
1995a). The molecular weight is high: 170.000 Da for 
green bell pepper fruits (Shibata et al., 1995a), 
220.000 Da in spinach leaves (Vick and Zimmerman, 
1987), between 240.000 and 260.000 Da in soybean 
cotyledons (Olias etal., 1990) and higher than 200.000 

Da in tomato fruits (Schreier and Lorenz, 1982). The 
enzyme is thought to be a trimer of 55.000 Da subunits 
in green bell pepper fruits while it is a tetramer composed 
of four subunits of 62.000 Da in soybean cotyledons. 
Recently, Shibata etal. (1995b) have demonstrated that 
hydroperoxide lyase was a heme protein. 

1.5. Substrate specificity 

Hydroperoxide lyases can be classified into two 
categories based on their substrate specificity: the 9-
hydroperoxide specific enzyme which cleaves 
exclusively the 9-isomer and the 13-specific one which 
uses the 13-isomer as substrate. Pear fruits 
hydroperoxide lyase belongs to the first type (Kim and 
Grosch, 1981) while watermelon seedlings (Vick and 
Zimmerman, 1976), tea leaves (Hatanaka etal., 1982), 
cultured tobacco cells (Sekyia et ai, 1984), tomato 
fruits (Schreier and Lorenz, 1982), alfalfa seedlings 
(Sekyia et al., 1979) and green bell pepper fruits 
(Shibata ei a/., 1995a) lyases are of the second type. 
In kidney beans (Matthew and Galliard, 1978), 
cucumber seedlings (Sekyia et ai, 1979) and fruits 
(Galliard and Phillips, 1976), and in soybean seedlings 
(Gardner et ai, 1991) the enzyme is described as 
cleaving both substrates. This last feature can be 
explained by the fact that the enzyme belongs to a third 
type of hydroperoxide lyase which would accept both 
substrates or by the fact that different isoenzymes are 
present in the plant. Indeed, Matsui ei al. (1989) 
demonstrated that an enzyme extracted from 
cucumber cotyledons consisted of two isomers, one 
cleaving the 9-isomer and the other one the 13-isomer. 

The enzyme in non-photosynthetic plant tissues is 
typically more active with linoleic acid hydroperoxides 
whereas hydroperoxide lyase in photosynthetic organs 
usually shows high activity with linolenic acid 
hydroperoxide (Sekyia etal., 1984). 

A systematic study of substrate-specificity of 
hydroperoxide lyase extracted from tea leaves was 
undertaken using synthetic substrates (Hatanaka etal., 
1992; Hatanaka, 1993). When 13-hydroperoxy (9Z, 
11E, 15Z) octadecatrienoic acid is replaced by 13-
hydroperoxy (6Z, 9Z, 11E) octadecatrienoic acid, the 
reactivity is reduced to 22% of the original one. 15-
hydroperoxy (5Z, 8Z, 11Z, 13E) eicosatetraenoic acid 
is not a substrate for the enzyme while lipoxygenase is 
able to synthetize it. When the carboxyl group is 
converted to a methyl ester or an alcohol, the reactivity 
is reduced to 27 and 53% respectivelly. Moreover, the 
S configuration is favoured by the tea enzyme. This last 
result has also be obtained by Matoba etal. (1985) with 
soybean seeds where 13-S-hydroperoxide of linoleic 
acid is preferred. Gardner et al. (1991) report that the 
9-S-hydroperoxide is used by soybean seeds and 
cotyledons. Further studies were undertaken by 
Hatanaka's team using synthetized substrates. Figure 
2 presents the hydroperoxides used for this study. For 
both dienoic and trienoic hydroperoxides, n was 
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increased gradually for a total number of carbon 
ranging from 14 to 24. 

OOH 
COOH 

•(CH2) 

against inactivation, meaning that radical species are 
implicated in the catalysis. Hydroperoxide lyase from 
green bell pepper fruits is inhibited by salicylic acid 
and salicylhydroxamic acid, acting as metal chelating 
agents (Shibata et al., 1995a). This last result was 
confirmed by the discovery of a heme group in the 
enzyme (Shibata et al., 1995b). 

Dienoic hydroperoxides 

OOH 
COOH 

n 

Trienoic hydroperoxides 

Figure 2 
Fatty acids hydroperoxides used by Hatanaka (1993) to study 

the specificity of tea leaf hydroperoxide lyase. 

In all cases, the authors observed that the reactivity 
was ten times higher with the trienoic hydroperoxides 
compared to the dienoic ones. The activity increased 
gradually with the carbon number until the C-22 
containing substrate and decreased there after. The 
substrate requirements for tea leaves hydroperoxide 
lyase is thus a C-18 straight chain fatty acid with a free 
carboxyl group, attachment of the hydroperoxide group 
to w-6 with a S configuration, an E double bond at w-? 
and a Z double bond at Ü)-9. When a double bound is 
introduced between the C to-3 and the C CÜ-4 it is very 
effective in increasing the activity whereas the 
introduction of a double bound between the C w-IO 
and the terminal COOH (case of y-linolenic acid), the 
activity decreases strikingly. The recognition of the 
chain length ranging from the w-l 0 carbon to the terminal 
carbonyl is not so strict. 

1.6. Enzyme inhibition 

The study of tea leaves hydroperoxide lyase 
substrate-inhibition (Matsui et al., 1991 and 1992) 
reveals that the enzyme is irreversibly inhibited by 13-
hydroperoxide of linoleic acid. Degradation of 9-
hydroperoxide of linoleic acid is little catalyzed by the 
enzyme, but this substrate also inactivates it whereas 
other organic hydroperoxides and H2O2 do not act as 
inactivator. The enzyme is protected from substrate 
inhibition by dithiothreitol and is inhibited by Hg2Cl2 
suggesting the implication of an essential SH group 
near the reaction center of the enzyme. Organic 
antioxidant such as a-tocopherol, 
nordihydroguaiaretic acid, butylated hydroxyanisole 
and butylated hydroxytoluene also protect the enzyme 

1.7. Catalysis mecanism 

Two different mecanisms are described in 
hydroperoxide lyase catalysis. The heterolytic one is 
typical for higher plants and leads to the synthesis of 
aldehydes and oxoacids as presented in figure 1. In 
algae (Vick and Zimmerman, 1989; Adrianarison etal., 
1989) and mushrooms (Wurzenberger and Grosch, 
1984a et b), a hemolytic mecanism takes place, 
furnishing an alcohol or a hydrocarbon and an oxoacid. 
The alga Chlorella pyrenoldosa converts the 13-
hydroperoxide of linoleic or linolenic acids respectively 
to pentane or pentene and 13-oxo-9Z, 11 E-tridecanoic 
acid (Vick and Zimmerman, 1989).The blue green alga 
Oscillatoria exhibits the same activity but furnishes 
pentanol rather than pentane (Andrianarison et al., 
1989). In mushrooms, lipoxygenase probably 
synthetizes a special hydroperoxide, the 10-isomer 
rather than a 13-or a 9-isomer. The lyase cleaves 
the hydroperoxide into 1-octen-3-ol from the 10-S-
hydroperoxide of linoleic acid, or 1,5 octadien-3-ol from 
the 10-S-hydroperoxide of linolenic acid, and IO-oxo-8-
E decenoic acid (Wurzenberger and Grosch, 1984a 
and b) (figure 3). The grass Agropyron repens forms 
volatile products characteristic of both hemolytic and 
heterolytic mecanisms (Berger etal., 1986). 

10-livdTOperoxllinolenic acid 

(mushrooms) 

lO-hvdroperoxilinoleic acid 

(mushrooms) 

OH lO-oxo-8-E-deccnoic acid 

3,6-octadien-l-ol 

13-hvdropcroxilinoteic acid 13-hvdroperoxiIinolcnic acid 

pentanol (Oscillaloria) 

2-pentcne (Chlorella) 

Figure 3 
Homolytic cleavage of fatty acid hydroperoxides in mushrooms, 

algae and grass (Gardner, 1991). 
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Hatanaka et al. (1986) have studied the heterolytic 
cleavage mecanism using labelled hydroperoxides. As 
shown in figure 4, one of the labelled oxygen from the 
hydroperoxide group is transferred to the oxoacid and not 
to the aldehyde. This mecanism is similar to that 
described by Gardner an Plattner (1984) for the cleavage 
of hydroperoxide from linoleic acid into aldehyde and 
oxoacid by a strong Lewis aprotic solvent. 

12-oxo-9-Z-dodecenoic acid 

Figure 4 
Cleavage of 13-hydroperoxide of linoleic acid by hydroperoxide 
lyase of tea chloroplasts according to Hatanaka et al. (1986). 

1.8. Physiological roles of liydroperoxide 
lyase products 

The exact function of hydroperoxide lyase is still 
unclear altough most hypothesis focus on a role in 
plant defense and wound repair. One of the 
hydroperoxide lyase products originating from 
linoleic acid, 2-E-hexenal, is an effective fungicide 
(Zeringue And Mc Cormick, 1989). It is also 
demonstrated that the molecule has a bactericide 
(Schildknecht and Rauch, 1961) and an insecticide 
effect (Lyr and Banasiak, 1983). The other cleavage 
product, 12-0X0-10-E-dodecenoic acid, is easily 
oxidized non-enzymatically to E-2-dodecendioic acid 
commonly called traumatic acid. This acid is wound 
plant hormone causing cell division near the wound 
site resulting in the formation of a protective callus 
(Zimmerman and Coudron, 1979). 

2, HYDROPEROXIDE DEHYDRASE 

2.1. Definition 

Hydroperoxide dehydrase (E.G. 4.2.1.92) is the 
revised nomenclature for an enzyme that was 
previously tought to be two separate enzymes, namely 
hydroperoxide isomerase and hydroperoxide cyclase. 
The hydroperoxide isomerase and cyclase activities 
were discovered by Zimmerman (1966) and by 

Zimmerman and Feng (1978), respectively. 
Hydroperoxide isomerase was supposed to directly 
catalyze the transformation of hydroperoxide from 
linolenic and linoleic acids into a and y-ketols, while 
hydroperoxide cyclase supposedly transformed 13-S-
hydroperoxide of linolenic acid into 12-oxo-phytodienoic 
acid. Recent works undertaken by four different teams 
suggested that aliene oxyde was the common 
intermediate to the formation of ketols and 12-oxo-
phytodienoic acid (Hamberg, 1987; Crombie and 
Morgan, 1987; Corey et al., 1987; Brash et al., 1987). 
This intermediate is highly unstable, having a half life of 
33 s at 0°C. After the aliene oxide is formed from the 9-
S or 13-S-hydroperoxide of linoleic acid, spontaneous 
non-enzymatic hydrolysis affords a and y-ketols. The 
aliene oxide formed from 13-S-hydroperoxide of 
linolenic acid spontaneously converts into ketols but 
also into 12-oxo-phytodienoic acid (enzymatically or not) 
at a level of about 10% of total products (see figure 5). 

13-hvdroperoxilinolenic acid 

'"v l̂ 
Hydroperoxide 

° " v > l dehydrase 

12, 13-cpoxy-9-Z, 11,15-Z-octadecatrienoicacid 9-S, 13-S-oxo-phytodienoic acid 

9-R, 13-R-oxo-phytodienoic acid 

Figure 5 
Action of hydroperoxide dehydrase on 13-hydroperoxide of 

linolenic acid (Martini and lacazio, 1995). 

2.2. Occurence 

The enzyme was first described in flax seed (as 
hydroperoxide isomerase) by Zimmerman (1966) and 
Zimmerman and Vick (1970). It was later identified in 
corn (Gardner, 1970), barley (Yabuuchi and Amaha, 
1976), lettuce, oat, spinach, sunflower, wheat (Vick 
and Zimmerman, 1979) and cotton seedlings (Vick and 
Zimmerman, 1981), eggplant (Groosman eta!., 1983), 
broad bean (Vick and Zimmerman, 1983) and spinach 
leaves (Vick and Zimmerman, 1987). Two species of 
coral (Corey et al., 1987; Brash et al., 1987) and an 
alga (Vick and Zimmerman, 1989) also exhibit 
hydroperoxide dehydrase activity. The enzyme occurs 
thus not only in most cereal seeds and seedling but 
also in fruits and leaves. 
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2.3. Subcellular localisation 

Like hydroperoxide lyase, hydroperoxide dehydrase 
is a membrane bound enzyme and requires thus 
detergent for solubilization (Vick and Zimmerman, 
1981; Vick and Zimmerman, 1987). The enzyme is 
routinely isolated as a microsomal pellet, but the 
specific identity of the membrane association has been 
incompletely investigated. In spinach leaves, 
hydroperoxide dehydrase as well as hydroperoxide 
lyase are associated with whole and broken 
chloroplasts (Vick and Zimmerman, 1987). 

2.4. Properties 

The optimum pH of hydroperoxide dehydrase is 
between 6 and 7 (Vick and Zimmerman, 1981; 
Grossman et al., 1983; Vick and Zimmerman, 1987; 
Baertshi et al., 1988). The molecular weight of the 
enzyme is 250.000 Da in cotton seedlings (Vick and 
Zimmerman, 1981), 220.000 in spinach leaf (Vick and 
Zimmerman, 1987), and 293.000 in eggplant 
(Grossman et al., 1983). In flaxseed, hydroperoxide 
lyase is described as a 55.000 Da protein (Song and 
Brash, 1991) suggesting that it probably exists as a 
tetramer. The last authors have demonstrated the 
presence of a heme group in the enzyme. 

2.5. Substrate specificity 

Usually, both 9 and 13-hydroperoxides of linoleic 
and linolenic acids are substrates for hydroperoxide 
dehydrase but some plants such as cotton seedling 
(Vick and Zimmerman, 1981) and flaxseed (Feng and 
Zimmerman, 1979) have a preference for the 13-
isomer. Flaxseed hydroperoxide dehydrase 
metabolizes only the S form of 13-hydroperoxilinolenic 
acid (Baertschi et al., 1988). 

2.7. Physiological roles of the hydroperoxide 
dehydrase pathway products 

The ketol products of hydroperoxide dehydrase 
have no known physiological role. It is possible that 
ketols are not formed in significant amount during in 
vivo metabolism in unstressed plants. Ketols may only 
exists as products of in vitro aliene oxyde metabolism 
or in wounded plants where extensive cell disruption 
has occured (Vick, 1993). 

A second product, resulting from the action of 
hydroperoxide dehydrase on 13-hydroperoxide of 
linolenic acid is 12-oxo-phytodienoic acid. This last 
compound is formed spontaneously from the 
corresponding aliene oxide or by the action of an 
aliene oxide cyclase (see figure 5). 

It is the precursor of jasmonic acid which is 
synthetized by the successive action of 12-oxo-

phytodienoic acid reductase and p-oxidation enzymes 
(figure 6; Vick and Zimmerman, 1984). 

12-oxo-phvtodienoic acid 

HADPH + H* NADP+ 

^ ^ 

9 
'vcxxsH p-oxidation 

P -

Figure 6 
The jasmonic acid pathway (Vick and Zimmerman, 1984) 

Aliene oxide cyclase (E.G. 5.2.99.6) which 
catalyzes the stereospecific cyclisation of the aliene 
oxide into 12-oxo-phytodienoic acid has been detected 
in several plants species but it is best-characterized 
from corn kernels and potato tubers. It is a soluble 
enzyme of about 50.000 Da (Hamberg and 
Fahlstadius, 1990). 12-oxo- phytodienoate reductase 
(E.G. 1.3.1.42) catalyses the reduction of the A'° 
double bond of 12-oxo-phytodienoic acid. The enzyme 
has been observed in many species but its partial 
purification has only been described in corn kernel. 
The enzyme has a molecular weight of 54.000 Da and 
uses NADPH as co-factor (Vick and Zimmerman, 1984 
and 1986). |3-oxidation enzymes have only been 
suspected because each product retains the Z 
configuration in the side chain (Vick, 1993). Jasmonic 
acid and jasmonates have often been cited to influence 
growth regulation. Inhibitory effects may include 
retardation of seedling and tissue culture growth, 
suppression of seed and pollen germination. Jasmonic 
acid frequently promotes processes associated with 
plant stress, such as stomatal closure, senescence, 
chlorophyll degradation and respiration. In many 
aspects, jasmonic acid shares similarities with abscisic 
acid (Parthier, 1991; Van den Berg and Ewing, 1991). 
Another role for jasmonic acid is chemical signaling in 
response to certain stressors (insect, mecanical, water 
deficit) which results in the synthesis of low molecular 
weight compounds (Vick, 1993). 

3. OTHER HYDROPEROXIDE METABOLIZING 
ACTIVITIES 

3.1. Divinyl ether synthesis 

Potato extracts were reported to catalyze the 
transformation of 9-S-hydroperoxide of linoleic and 
linolenic acid into divinyl ethers named respectivelly 
colneleic and colnelenic acids (Galliard and Ghan, 
1980). Labeling experiments were undertaken to 
understand the mode of action of the enzyme 
(Grombie et al., 1987; Grombie and Morgan, 1987). 
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The 180-label from 18O2-hydroperoxide of linoleic acid 
was inserted into the divinyl ether moiety, and 
incubation of (9, 10, 12, 13-2H4)-9-S-hydroperoxide of 
linoleic acid with potato enzyme extract resulted in the 
retention of all four deuterium atoms. Fahlstadius and 
Hamberg (1990) proposed a heterolytic rearrangement 
for the reaction which is very similar to the one 
proposed for hydroperoxide dehydrase and 
hydroperoxide lyase (figure 7). 

9-S-hvdroDeroxide of linoleic acid 

concomitant oxidation of unsaturated fatty acids in 
epoxides. The oxygen of the epoxy group originates 
from the hydroperoxide group. The addition of oxygen 
is sterospecific and retains the Z configuration of the 
initial fatty acid. Microsomal hydroperoxide dependent 
peroxygenase from soybean (Blee and Schuber, 
1990), or hydroperoxide dependant epoxygenase from 
Vicia faba (Hamberg and Hamberg, 1990), catalyzed 
the epoxydation of unsaturated fatty acids in the 
presence of 13-S-hydroperoxide of linoleic acid. The 
enzymes form 9,10 epoxide from oleic and 12,13 
epoxide from linoleic acid. The soybean enzyme can 
also synthetize a 9, 10, 12, 13-di-epoxide. The two 
enzymes have some common features in their 
catalysis mecanisms but they afford differences in the 
stereospecificity of epoxidation. That is why separated 
nomenclatures are suggested. In fact, soybean and 
Vicia faba extracts furnish 9-R, 10-S epoxides but the 
12, 13-epoxides have opposite stereochemistry (12-S, 
13-R for Vicia faba and 12-R, 13-S for soybean). 

9-S-hvdroperoxide of linolenic acid 

Colnclenic add 

Figure 7 
Divinyl ether synthesis from 9-S-hydroperoxide of linoleic 

and linolenic acid (Fahlstadius and Hamberg, 1990). 

3.2. Hydroperoxide isomerase 

Hydroperoxide isomerase converts fatty acids into 
epoxyhydroxy fatty acid. The enzyme must not be 
confused with the hydroperoxide isomerase described 
before and renamed now hydroperoxide dehydrase. 
Hydroperoxide isomerase has been described in 
cereal flours but the results are not sufficient to assign 
a mecanism. Hamberg (1986) reports on the 
transformation of 15-S-hydroperoxide of arachidonic 
acid into trihydroxyeicosatrienoic acid by the fungus: 
Saprolegnia parasitica. 9 and 13-S-hydroperoxides of 
linoleic acid are also substrates for the enzyme 
(Hamberg, 1989). The enzyme is soluble and cannot 
be distinguished from the lipoxygenase catalysis. Both 
activities seem to be situated on the same protein or 
on the same protein complex (Herman and Hamberg, 
1987). 

3.3. Hydroperoxide dependent peroxygenase 
and epoxygenase (Gardner, 1991) 

The reaction catalyzed by those two enzymes is 
characterized by the reduction of fatty acid 
hydroperoxides in hydroxy fatty acids and by the 

BIBLIOGRAPHY 

Andrianarison, R. H., Beneytout, J. L. and Tixier, M. (1989). -«An 
enzymatic conversion of lipoxygenase products by a 
hydroperoxide lyase in blue-green algae (Oscillatoria sp.)».-
Plant Physiol. 91, 1280-1287. 

Baertschi, S. W., Ingram, C. D., Harris, T. M. and Brash, A.R. 
(1988). -«Absolute configuration of c/s-12-oxophytodienoic 
acid of flaxseed: implications for the mecanism of 
biosynthesis from the 13(S)-hydroperoxide of linolenic 
acid».- Biochemistry 27, 18-24. 

Berger, R. G., Kler, A. and Drawert, F. (1986). -«The C-6 
aldehyde forming system in Agropyron repens».- Biochim. 
Biophys. Acta. 883, 523-530. 

Brash, A. R., Baertschi, S. W., Ingram, C. D. and Harris, T. M. 
(1987). -«On non-cyclogenase prostaglandin synthesis in 
the sea whip coral, Plexaura homomalla: an 8(R)-
lipoxygenase pathway leads to formation of an a-ketol and a 
racemic prostanoid».- J. Biol. Chem. 282, 15829-15839. 

Blee E. and Scuber F. (1990). -«Efficient epoxidation of 
unsaturated fatty acids by a hydroperoxide-dependant 
oxygenase».- J. Biol. Chem. 265, 12887-12894. 

Corey, E. J., d'Alarcao, M., Matsuda, 8. R T. and Lansbury, R T. 
(1987). -«Intermediacy of 8(R)-HPETE in the conversion of 
arachidonic acid to pre-clavulone A by Clavularia viridis. 
Implications for the biosynthesis of marine prostanoids».- J. 
Am. Chem. Soc. 109, 289-290. 

Crombie, L, Morgan, D. O. and Smith, E. H. (1987). -«The 
enzymic formation of colneleic acid, a divinyl ether fatty acid: 
experiments with (9-8-1802) hydroperoxioctadeca-10-E, 12-
Z-dienoic acid».- J. Chem. Soc. Chem. Comm. 502-503. 

Crombie, L, Morgan, D. 0.(1987).-«Experiments with (9,10,12, 
13-̂ H4) linoleic acid on the formation of 9-(nona-(1'E), (3'Z)-
dienyloxy)non-(8E)-enoic (colneleic) acid and (13R)-hydroxy-
12-OXO-octadec-(9Z)-enoic acid by plant enzymes».- J. 
Chem. 80c. Chem. Commun. 503-504. 

Fahlstadius, P. and Hamberg, M. (1990). -«Stereospecific 
removal of the pro-R hydrogen at C-8 of (98)-
hydroperoxyoctadecadienoic acid in the biosynthesis of 
colneleic acid».- J. Chem. 80c. 2027-2030. 

Feng, P. and Zimmerman, D. C. (1979). -«Substrate specificity of 
flax hydroperoxide isomerase».- Lipids 14, 710-713. 

Galliard, T. and Philips, D. R. (1976). -«The enzymic cleavage of 
linoleic acid to C-9 carbonyl fragments in extracts of 

(c) Consejo Superior de Investigaciones  Científicas 
Licencia Creative Commons 3.0 España (by-nc)

http://grasasyaceites.revistas.csic.es



36 Grasas y Aceites 

cucumber {Cucumis sativus) fruit and the possible role of 
lipoxygenase».- Biochim. Biophys. Acta. 431, 278-287. 

Galliard, T.; Mattew, J. A., Wright, A. J. and Fishwick, M. J. (1977). 
-«The enzymic breakdown of lipids to volatile and non
volatile carbonyl fragments in disrupted tomato fruits».- J. 
Sci. Food Agrie. 28, 863-868. 

Galliard, T. and Chan, H. W. S. (1980). -«Lipoxygenases» in «The 
biochemistry of plants: a comprehensive treatise» p. 131. Vol. 
4. Lipids: structure and function. Stumpf, P. K. and Conn, E.E. 
(Ed.)-Academic press, New York. 

Gardner, H. W. (1991). -«Recent investigations into the 
lipoxygenase pathway of plants».- Biochim. Biophys. Acta. 
1084,221-239. 

Gardner H. W. (1970).-«Sequential enzymes of linoleic oxidation 
in corn germ: lipoxygenase and linoleate hydroperoxide 
isomerase».- J. Lipid Res. 11, 311 -321. 

Gardner, H. W., Plattner, R. D. (1984). -«Linoleate 
hydroperoxides are cleaved heterolytically into aldehydes by 
a Lewis acid in aprotic solvent».- Lipids 19 (4), 294-299. 

Gotz-Schmidt, E. M., Wenzel, M. and Schreier, R (1986). -«C-6 
volátiles in homogenates from green leaves: localization of 
hydroperoxide lyase activity».- Lebensm. Wiss. Technol. 19, 
152-155. 

Grossman, S., Bergman, M. and Sofer, Y. (1983). -«Purification 
and partial characterization of eggplant linoleate 
hydroperoxide isomerase».- Biochim. Biophys. Acta. 752, 
65-72. 

Hamberg, M. (1986). -«isolation and structure of lipoxygenase 
from Saprolegnia parasitica».- Biochim. Biophys. Acta. 876, 
688-692. 

Hamberg, M. (1987). -«Mecanism of corn hydroperoxide 
isomerase: detection of 12.13-S-oxido-9-Z-octadecadienoic 
acid».- Biochim. Biophys. Acta 920, 76-84. 

Hamberg, M. (1989). -«Fatty acid hydroperoxide isomerase in 
Saprolegnia parasitica: structural studies of epoxy alcohols 
formed from isomeric hydroperoxyoctadecadienoates».-
Lipids 24, 249-255. 

Hamberg, M. and Hamberg G. (1990). -«Hydroperoxide 
dependent epoxidation of unsaturated fatty-acids in broad 
bean (Vicia faba L)».- Arch. Biochem. Biophys. 283, 409-
416. 

Hamberg, M., and Fahlstadius, P. (1990).-«Aliene oxide cyclase: 
a new enzyme in plant metabolism».- Arch. Biochem. 
Biophys. 276, 518-526. 

Hatanaka, A., Kajiwara, T, Sekiya, J. and Inoue, S. (1982). 
-«Solubilization and properties of the enzyme-cleaving 13-1-
hydroperoxilinolenic acid in tea leaves».- Phytochemistry 21, 
13-17. 

Hatanaka, A., Kajiwara, T, Sekiya, J. and Toyota H. (1986). 
-«Oxygen incorporation in cleavage of ^̂ O labeled 13-
hydroperoxylinoleyl alcohol into 12-hydroperoxy (3Z)-
dodecenalin tea chloroplasts».- Z. Naturforsch. 41c, 359-
362. 

Hatanaka, A., Kajiwara, T, Matsui, K. and Toyota H. (1992). 
-«Substrate specificity of tea leaf hydroperoxide lyase».- Z. 
Naturforsch. 47c, 677-679. 

Hatanaka, A. (1993). -«The biogeneration of green odour by 
green leaves».- Phytochemistry 34 (5), 1201-1218. 

Herman, R. P. and Hamberg, M. (1987). -«Properties of the 
soluble arachidonic acid 15-lipoxygenase and 15-
hydroperoxide isomerase from the oomycete Saprolegnia 
parasitica» - Prostaglandins 34, 129-139. 

Kim, I. S. and Grosch, W. (1981). -«Partial purification and 
properties of a hydroperoxide lyase from fruits of pear».- J. 
Agrie. Food Chem. 29, 1220-1225. 

Lyr, H., and Banasiak, L. (1983). -«Alkenals, volatile defense 
substances in plants, their properties and activities».- Acta 
Phytopathol. Acad. Sci. Hung. 18, 3-12. 

Martini, D. and lacazio, G. (1995). -«Les lipoxygenases et les 
voles métaboliques associées».- Oléagineux. Corps gras 
Lipides 2 (5), 374-385. 

Matoba, T, Hidaka, H., Kitamura, K., Kaizuma, N. and Kito, M. 
(1985). -«Contribution of hydroperoxide lyase activity to n-
hexanal formation in soybean».- J. Agrie. Food Chem. 33, 
856-858. 

Matsui, K., Shibata, Y, Kajiwara, T. and Hatanaka, A. (1989). 
-«Separation of 13- and 9- hydroperoxide lyase activities in 
cotyledons of cucumber seedlings».- Z. Naturforsch. 44c, 
883-885. 

Matsui, K., Toyota, H., Kajiwara, T, Kakuno, T. and Hatanaka, A. 
(1991). -«Fatty acid hydroperoxide cleaving enzyme, 
hydroperoxide lyase from tea leaves».- Phytochemistry 30, 
2109-2113. 

Matsui, K., Kajiwara, T. and Hatanaka, A., (1992). -«Inactivation 
of tea leaf hydroperoxide lyase by fatty acid hydroperoxide».-
J. Agrie. Food Chem. 40, 175-178. 

Matthew, J. A. and Galliard, T. (1978). -«Enzymic formation of 
carbonyls from linoleic acid in leaves of Phaseolus 
vü/fifans».-Phytochemistry 17, 1043-1044. 

Olias, J. M., Rios, J. J., Valle, M., Zamora, R., Sanz, L C. and 
Axelrod, B. A. (1990). -«Fatty acid hydroperoxide lyase in 
germinating soybean seedlings».- J. Agrie. Food Chem. 38, 
624-630. 

Parthier, B. (1991). -«Jasmonates, new regulators of plant 
growth and development: many facts and few hypotheses on 
their action».- Bot. Acta. 104, 446-456. 

Schildknecht, H. and Rauch, G. (1961). -«Defensive substances 
of plants. II. Chemical nature of the volatile phytocides of 
leafy plants, particularly of Robinia pseudoacacia»- Z. 
Naturforsch. 16b, 422-429. 

Schreier, P. and Lorenz, G. (1982). -«Separation, partial 
purification and characterization of a fatty acid hydroperoxide 
cleaving enzyme from apple and tomato fruits».- Z. 
Naturforsch. 37c, 165-173. 

Sekiya, J., Kajiwara, T, and Hatanaka, A. (1979). -«Volatile C-6 
aldehyde formation via hydroperoxides from C-18 
unsaturated fatty acids in etiolated alflfa and cucumber 
seedlings».- Aghc. Biol. Chem. 43, 969-980. 

Sekiya, J., Kajiwara, T, Munechika, K. and Hatanaka, A. (1983). 
-«Distribution of lipoxygenase and hydroperoxide lyase in 
the leaves of various plant species».- Phytochemistry 22 (9), 
1867-1869. 

Sekiya, J., Tanigawa, S., Kajiwara, T. and Hatanaka, A. (1984). 
-«Fatty acid hydroperoxide lyase in tobacco cells cultured in 
vitro».- Phytochemistry 23, 2439-2443. 

Shibata, Y, Matsui, K., Kajiwara, T. and Hatanaka, A. (1995a). 
-«Purification and properties of fatty acid hydroperoxide 
lyase from green bell pepper fruits».- Plant Cell Physiol. 36 
(1), 147-156. 

Shibata, Y, Matsui, K., Kajiwara, T. and Hatanaka, A. (1995b). 
-«Fatty acid hydroperoxide lyase is a heme protein».-
Biochem. Biophys. Res. Comm. 207 (1), 438-443. 

Song, W. C. and Brash, A. R. (1991). -«Purification of an aliene 
oxide synthase and identification of the enzyme as a 
cytochrome P-450».- Science 253, 781-783. 

TressI, R., and Drawert, F (1973). -«Biogenesis of banana 
volátiles».- J. Agrie. Food Chem. 21 (4), 560-565. 

Van den Berg, J.H. and Ewing, E.E. (1991). -«Jasmonates and 
their role in plant growth and development, with special 
references to the control of potato tuberization: a review».-
Am. Potatoes, 781-790. 

Vick, B.A. and Zimmerman, D.C. (1986). -«Characterization of 
12-OXO-phytodienoic acid reductase in corn; the jasmonic 
acid pathway».- Plant Physiol. 80, 802-805. 

Vick, B.A. and Zimmerman, D.C. (1987). -«Pathways of fatty acid 
hydroperoxide metabolism in spinach leaf chloroplasts».-
Plant Physiol. 85, 1073-1078. 

Vick, B.A. and Zimmerman, D.C. (1989). -«Metabolism of fatty 
acid hydroperoxides by Chlorella pyrenoidosa».- Plant 
Physiol. 90, 125-132. 

Vick, B.A., Zimmerman, D.C. (1976). -«Lipoxygenase and 
hydroperoxide lyase in germinating watermelon seedlings».-
Plant Physiol. 57, 780-788. 

(c) Consejo Superior de Investigaciones  Científicas 
Licencia Creative Commons 3.0 España (by-nc)

http://grasasyaceites.revistas.csic.es



Vol .48. Faso. 1 (1997) 37 

Vick, B.A. and Zimmerman, D.C. (1979). -«Distribution of a fatty 
acid cyclase enzyme system in plants».- Plant Physiol. 64, 
203-205. 

Vick, B.A. and Zimmerman, D.C. (1981). -«Lipoxigenase, 
hydroperoxide ¡somerase, and hydroperoxide cyclase in 
young cotton seedlings».- Plant Physiol. 67, 92-97. 

Vick, B.A. and Zimmerman, D.C. (1983). -«The biosynthesis of 
jasmonic acid: a physiological role for plant lipoxygenase».-
Biochem. Biophys. Res. Commun. 111, 470-477. 

Vick, B.A. (1993). -«Oxygenated fatty acid of the lipoxygenase 
pathway».- in: «Lipid metabolism in plants», p. 168. Moore, 
T.S. (Ed.). CRC press, Boca Raton, U.S.A. 

Vick, B.A. and Zimmerman, D.C. (1984). -«Biosynthesis of 
jasmonic acid by several plant species».- Plant Physiol. 75, 
458-461. 

Wardale, D.A., Lambert, E.A. and Galliard, T. (1978). -«Fatty acid 
hydroperoxide cleavage in cucumber».- Phytochemistry 17, 
205-212. 

Wurzenberger, M. and Grosch, W. (1984a). -«Stereochemistry of 
the cleavage of the 10-hydroperoxide isomer of linoleic acid 
to 1-octen-3-ol by a hydroperoxide lyase from mushrooms 
(Psalliota bispora)».- Biochim. Biophys. Acta. 795, 163-165. 

Wurzenberger, M. and Grosch, W. (1984b). -«The formation of 1-
octen-3-ol from the 10-hydroperoxide isomer of linoleic acid 
by a hydroperoxide lyase in mushrooms (Psalliota 
bispora)».- B.B.A. 794, 25-30. 

Yabuuchi, S. and Amaha, M. (1976). -«Partial purification and 
characterization of the linoleate hydroperoxide isomerase 
from grains of Hordeum distichum».- Phytochemistry 15, 
387-390. 

Zeringue, H.J. and Mc Cormick, S.P. (1989). -«Relationships 
between cotton leaf-derived volátiles and growth of 
Aspergillus flavus»- J. Am. Oil Chem. Soc. 66, 581-584. 

Zimmerman, D.C. (1966). -«A new product of linoleic acid 
oxidation by flaxseed enzyme».- Biochem. Biophys. Res. 
Comm. 23, 398-402. 

Zimmerman, D.C. and Feng, P. (1978). -«Characterization of a 
prostaglandin-like metabolite of linolenic acid produced by a 
flaxseed extract».- Lipids 13, 313-316. 

Zimmerman, D.C. and Vick, B.A. (1970). -«Hydroperoxide 
isomerase».- Plant Physiol. 46, 445-453. 

Zimmerman, D.C. and Coudron, C. (1979). -«Identification of 
traumatin, a wound hormone, as 12-oxo-trans-10-
dodecenoic acid».- Plant Physiol. 63, 536-541. 

Recibido: Septiembre 1996 
Aceptado: Febrero 1997 

(c) Consejo Superior de Investigaciones  Científicas 
Licencia Creative Commons 3.0 España (by-nc)

http://grasasyaceites.revistas.csic.es




