Controlled fermentation of Moroccan picholine green olives by oleuropein-degrading Lactobacilli strains

Authors

  • N. Ghabbour Laboratoire des Matériaux, Substances Naturelles, Environnement & Modélization (LMSNEM), Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah de Fès
  • Y. Rokni Laboratoire de Biologie des Plantes et des Microorganismes, Faculté des Sciences, Université Mohammed Premier
  • Z. Lamzira Laboratoire de Biologie des Plantes et des Microorganismes, Faculté des Sciences, Université Mohammed Premier
  • P. Thonart Unité de bio-industries, CWBI, Université de Liège
  • N. E. Chihib INRA-UMR UMET 8207-Equipe PIHM, CNRS-INRA, Université de Lille
  • C. Peres Instituto Nacional dos Recursos Biológicos, L-INIA
  • A. Asehraou Laboratoire de Biologie des Plantes et des Microorganismes, Faculté des Sciences, Université Mohammed Premier

DOI:

https://doi.org/10.3989/gya.0759152

Keywords:

Fermentation, Green olives, Lactobacillus, Oleuropein, Starter

Abstract


The control of the spontaneous fermentation process of un-debittered Moroccan Picholine green olives was undertaken basing the inoculation with two lactobacilli strains (Lactobacillus plantarum S175 and Lactobacillus pentosus S100). These strains, previously selected in our laboratory for their oleuropein-degrading capacity, were inoculated in olives brined at 5% of NaCl, and then incubated at 30 ÅãC. The physico-chemical parameters (pH, free acidity, reducing sugars, sodium chloride, oleuropein and its hydrolysis products), and the microbiological parameters (mesophilic aerobic bacteria, coliforms, Staphylococcus, lactic acid bacteria and yeasts and moulds), were regularly analyzed during the fermentation time. The results obtained showed the effectiveness of the lactic acid bacteria strains to develop suitable oleuropein biodegradation and controlled lactic fermentation processes more than the un-inoculated olives (control). This result was confirmed by the rapid elimination of coliforms and staphylococcus, the accumulation of hydroxytyrosol as a result of oleuropein biodegradation, and a drastic reduction in spoiled olives with good quality fermented olives.

Downloads

Download data is not yet available.

References

Arroyo-López, FN, Bautista-Gallego J, Domínguez-Manzano J, Romero-Gil V, Rodriguez-Gómez F, García-García P, Garrido-Fernández A, Jiménez-Díaz R. 2012. Formation of lactic acid bacteria–yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiol. 32, 295–301. http://dx.doi.org/10.1016/j.fm.2012.07.003 PMid:22986192

Arroyo-López FN, Querol A, Bautista-Gallego J, Garrido-Fernández A. 2008. Role of yeasts in table olive production. Int. J. Food Microbiol. 128, 189–196. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.08.018 PMid:18835502

Asehraou A, Peres C, Brito D, Faid M,Serhrouchni M. 2000. Characterization of yeast strains isolated from bloaters of fermented green table olives during storage. Grasas Aceites, 51, 225–229.

Ashwell G. 1957. Colorimetric analysis of sugars, Methods Enzymol., Volume 3: Academic Press, pp. 73–105.

Balatsouras G. 1985. Taxonomic and physiological characteristics of the facultative rod type lactic acid bacteria isolated from fermenting green and black olives. Grasas Aceites, 36, 239–249.

Benincasa C, Muccilli S, Amenta M, Perri E, Romeo FV. 2015. Phenolic trend and hygienic quality of green table olives fermented with Lactobacillus plantarum starter culture. Food Chem., 186, 271–276. http://dx.doi.org/10.1016/j.foodchem.2015.02.010 PMid:25976821

Brenes M, Garcia P, Durán MC, Garrido A. 1993. Concentration of phenolic compounds changes in storage brines of ripe olives. J. Agric. Food Chem. 58, 347–350. http://dx.doi.org/10.1111/j.1365-2621.1993.tb04272.x

Ciafardini G, Marsilio V, Lanza B, Pozzi N. 1994. Hydrolysis of oleuropein by Lactobacillus plantarum strains associated with olive fermentation. Appl. Environ. Microbiol. 60, 4142–4147 PMid:16349442 PMCid:PMC201948

Durán MC., Romero C, García P, Brenes M, Garrido A. 1997. Lactic acid bacteria in table olive fermentations. Grasas Aceites, 48, 297–311.

Fernández-Díez MJ, Ramos RC, Garrido A, Heredia AH, Mínguez I, Navarro L.R., Durán MC, González F, Castro AG. 1985. Green Table Olives, in: Derivados, I. d. l. G. y. s. (ed.) Biotechnology of Table Olives: CSIC, Madrid, pp. 53–123.

Fleming HP, Etchells JL. 1967. Occurrence of an Inhibitor of Lactic Acid Bacteria in Green Olives. Appl. Microbiol. 15, 1178–1184. PMid:16349729 PMCid:PMC547161

Fleming HP, Walter, WM, Etchells JL. 1973. Antimicrobial Properties of Oleuropein and Products of Its Hydrolysis from Green Olives. Appl. Microbiol. 26, 777–782. PMid:4762397 PMCid:PMC379901

Furneri PM, Marino A, Saija A, Uccella N, Bisignano G. 2002. In vitro antimycoplasmal activity of oleuropein. Int. J. Antimicrob. Agents, 20, 293–296. http://dx.doi.org/10.1016/S0924-8579(02)00181-4

Garrido-Fernández A, Adams MR, Fernández-Díez, MJ. 1997. Table Olives: Production and processing, London, UK, Chapman & Hall. http://dx.doi.org/10.1007/978-1-4899-4683-6

Garrido-Fernández A, Vaughn RH. 1978. Utilization of oleuropein by microorganisms associated with olive fermentations. Can. J. Microbiol. 24, 680–4. http://dx.doi.org/10.1139/m78-114 PMid:667735

Ghabbour N, Lamzira Z, Thonart P, Cidalia P, Markaoui M, Asehraou A. 2011. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives. Grasas Aceites, 62, 84–89. http://dx.doi.org/10.3989/gya.055510

Hurtado A, Reguant C, Bordons A, Rozes N. 2012. Lactic acid bacteria from fermented table olives. Food Microbiol. 31, 1–8. http://dx.doi.org/10.1016/j.fm.2012.01.006 PMid:22475936

Hurtado A, Reguant C, Bordons A, Rozès N. 2010. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives. Food Microbiol. 27, 731–740. http://dx.doi.org/10.1016/j.fm.2010.03.006 PMid:20630314

Juven B, Samish Z, Henis Y. 1968. Identification of oleuropein as a natural inhibitor of lactic fermentation of green olives. J. Agric. Res. 18, 137–138.

Kaltsa A, Papaliaga D, Papaioannou E, Kotzekidou P. 2015. Characteristics of oleuropeinolytic strains of Lactobacillus plantarum group and influence on phenolic compounds in table olives elaborated under reduced salt conditions. Food Microbiol. 48, 58–62. http://dx.doi.org/10.1016/j.fm.2014.10.016 PMid:25790992

Klaenhammer TR, Fremaux C, Hechard Y. 1994. Activité antimicrobienne des bactéries lactiques, in: Lorica, E. (ed.) Bactéries lactiques Tome : 1: De Roissart Het Luquet F. M., pp. 353–366.

Lamzira Z, Asehraou A, Brito D, Oliveira M, Faid M, Peres C. 2005. Reducing the bloater spoilage during lactic fermentation of Moroccan green olives. Food Technol. Biotechnol. 43, 373–377.

Landete JM, Curiel JA, Rodríguez H, de las Rivas B, Mu-oz R. 2008. Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem. 107, 320–326. http://dx.doi.org/10.1016/j.foodchem.2007.08.043

Leal-Sánchez MV, Jiménez Díaz R, Garrido Fernández A, Rejano Navarro L, Ruiz-Barba JL, Sánchez Gómez AH. 2003. Fermentation profile and optimization of green olive fermentationusing Lactobacillus plantarum LPCO10 as a starter culture. Food Microbiol. 20, 421–430. http://dx.doi.org/10.1016/S0740-0020(02)00147-8

Marsilio V, Lanza B. 1998. Characterisation of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. J. Sci. Food Agric. 76, 520–524. http://dx.doi.org/10.1002/(SICI)1097-0010(199804)76:4<520::AID-JSFA982>3.0.CO;2-I

Marsilio V, Lanza B, Pozzi N. 1996. Progress in table olive debittering: Degradationin vitro of oleuropein and its derivatives by Lactobacillus plantarum. J. Am. Oil Chem. Soc. 73, 593–597. http://dx.doi.org/10.1007/BF02518113

Marsilio V, Seghetti L, Iannucci E, Russi F, Lanza B, Felicioni M. 2005. Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing. J. Sci. Food Agric. 85, 1084–1090. http://dx.doi.org/10.1002/jsfa.2066

Medina E, García A, Romero C, De Castro A, Brenes M. 2009. Study of the anti-lactic acid bacteria compounds in table olives. Int. J. Food Sci. Technol. 44, 1286–1291. http://dx.doi.org/10.1111/j.1365-2621.2009.01950.x

Meilgaard M, Civille GV, Carr BT. 1991. Sensory evaluation techniques, Boca Raton, CRC Press.

Nychas GJE, Tassou SC, Board RG. 1990. Phenolic extract from olives: inhibition of Staphylococcus aureus. Lett. Appl. Microbiol. 10, 217–220. http://dx.doi.org/10.1111/j.1472-765X.1990.tb01337.x

Ozdemir Y, Akcay ME, 2011. Olive debittering methods and physical and chemical changes during debittering. Proceedings of National Olive Congress.

Panagou EZ, Schillinger U, Franz CM, Nychas GJ. 2008. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiol. 25, 348–358. http://dx.doi.org/10.1016/j.fm.2007.10.005 PMid:18206777

Panagou EZ, Tassou CC, Katsaboxakis CZ. 2003. Induced lactic acid fermentation of untreated green olives of the Conservolea cultivar by Lactobacillus pentosus. J. Sci. Food Agric. 83, 667–674. http://dx.doi.org/10.1002/jsfa.1336

Peres C, Catulo L, Brito D, Pintado C. 2008. Lactobacillus pentosus DSM 16366 starter added to brine as freeze-dried and as culture in the nutritive media for Spanish style green olive production. Grasas Aceites, 59, 234–238. http://dx.doi.org/10.3989/gya.2008.v59.i3.513

Randazzo CL, Fava G, Tomaselli F, Romeo FV, Pennino G, Vitello E, Caggia C. 2011. Effect of kaolin and copper based products and of starter cultures on green table olive fermentation. Food Microbiol. 28, 910–919. http://dx.doi.org/10.1016/j.fm.2010.12.004 PMid:21569933

Reis J, Paula A, Casarotti S, Penna A. 2012. Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Engineering Reviews, 4, 124–140. http://dx.doi.org/10.1007/s12393-012-9051-2

Rodríguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FL, Gómez-Cordovés C, Manche-o JM, Mu-oz R. 2009. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 132, 79–90. http://dx.doi.org/10.1016/j.ijfoodmicro.2009.03.025 PMid:19419788

Romeo F, Poiana M. 2007. Ability of commercially available Lactobacillus strains as starter in brining and debittering of table olives. Acta Alimentaria, 36, 49–60. http://dx.doi.org/10.1556/AAlim.36.2007.1.7

Rozes N, Peres C. 1996. Effect of oleuropein and sodium chloride on viability and metabolism of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 45, 839–843. http://dx.doi.org/10.1007/s002530050771

Ruiz-Barba JL, Brenes M, Jiménez R, García P, Garrido A. 1993. Inhibition of Lactobacillus plantarum by polyphenols extracted from two different kinds of olive brine. J. Appl. Bacteriol. 74, 15–19. http://dx.doi.org/10.1111/j.1365-2672.1993.tb02990.x

Ruiz-Barba JL, Garrido A, Jimenez R. 1991. Bactericidal action of oleuropein extracted from green olives against Lactobacillus plantarum. Lett. Appl. Microbiol. 12, 65–68. http://dx.doi.org/10.1111/j.1472-765X.1991.tb00505.x

Ruiz-Barba JL, Rios-Sanchez RM, Fedriani-Iriso C, Olias JM, Rios JL, Jimenez-Diaz R. 1990. Bactericidal Effect of Phenolic Compounds from Green Olives on Lactobacillus plantarum. Syst. Appl. Microbiol. 13, 199–205. http://dx.doi.org/10.1016/S0723-2020(11)80170-0

Sabatini N, Mucciarella MR, Marsilio V. 2008. Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum (Olea europaea L., cv. Moresca and Kalamata). LWT - Food Sci. Technol. 41, 2017–2022.

Sanchez, AH, de Castro, A, Rejano, L. & Montano, A. 2000. Comparative study on chemical changes in olive juice and brine during green olive fermentation. J. Agric. Food Chem. 48, 5975–80. http://dx.doi.org/10.1021/jf000563u PMid:11141267

Servili M, Settanni L., Veneziani G, Esposto S, Massitti O, Taticchi A, Urbani S, Montedoro, G.F. & Corsetti, A. 2006. The use of Lactobacillus pentosus 1MO to shorten the debittering process time of black table olives (Cv. Itrana and Leccino): a pilot-scale application. J. Agric. Food Chem. 54, 3869–3875. http://dx.doi.org/10.1021/jf053206y PMid:16719508

Tataridou M, Kotzekidou P. 2015. Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157: H7 and Listeria monocytogenes. Int. J. Food Microbiol. 208, 122–130. http://dx.doi.org/10.1016/j.ijfoodmicro.2015.06.001 PMid:26065729

Tsapatsaris S, Kotzekidou P. 2004. Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. Int. J. Food Microbiol. 95, 157–168. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.02.011 PMid:15282128

Zago M, Lanza B, Rossetti L, Muzzalupo I, Carminati D, Giraffa, G. 2013. Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity. Food Microbiol. 34, 81–87. http://dx.doi.org/10.1016/j.fm.2012.11.005 PMid:23498181

Published

2016-06-30

How to Cite

1.
Ghabbour N, Rokni Y, Lamzira Z, Thonart P, Chihib NE, Peres C, Asehraou A. Controlled fermentation of Moroccan picholine green olives by oleuropein-degrading Lactobacilli strains. Grasas aceites [Internet]. 2016Jun.30 [cited 2024Mar.28];67(2):e138. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1604

Issue

Section

Research