Nutritional value of fatty acids of the Neotropical freshwater fishes Prochilodus magdalenae, Pseudoplatystoma magdaleniatum and Ageneiosus pardalis

Authors

DOI:

https://doi.org/10.3989/gya.0713182

Keywords:

FAME, Fish oil, Freshwater fish, GC-MS, Lipid quality, Polyunsaturated fatty acids

Abstract


This study aimed to determine the nutritional value of the fatty acids in the freshwater fish Prochilodus magdalenae, Pseudoplatystoma magdaleniatum and Ageneiosus pardalis during dry and wet Neotropical seasons with the view to generate useful information for nutrition and sustainable commercial exploitation. The analysis of fatty acids was performed by gas chromatography–mass spectrometry and the nutritional value was calculated using five estimators: n-6/n-3 ratio, unsaturation index (UI), atherogenicity index (AI), thrombogenicity index (TI) and ratio of hypocholesterolemic/hypercholesterolemic (h/H) fatty acids. A different number of fatty acids (P. magdaleniatum = 50, P. magdalenae = 41, and A. pardalis = 32) was identified for each species and the average abundance percentages were different in the two seasons (p < 0.05). Prochilodus magdalenae and P. magdaleniatum showed healthy n-6/n-3 ratios (1.04 and 2.72) in the different seasons. Although the three species showed low values of UI (0.37–0.63), the remaining nutritional indexes were within the healthy range (AI: 0.04–0.70, TI: 0.66–1.07, h/H: 0.80 – 24.40). Multivariate analysis showed similar healthy nutritional values for the species, with exception of P. magdaleniatum.

Downloads

Download data is not yet available.

References

Ackman RG. 1990. Seafood lipids and fatty acids. Food Rev. Int. 6, 617-646. https://doi.org/10.1080/87559129009540896

Bowen SH. 1983. Detritivory in neotropical fish communities. Environ. Biol. Fish. 9, 137-144. https://doi.org/10.1007/BF00690858

Christie WW. 2013. Fatty Acids and Mass Spectrometry. Scotland: James Hutton Institute (Mylnefield Lipid Analysis), Invergowrie, Dundee (DD2 5DA).

Connor WE. 2000. Importance of n-3 fatty acids in health and disease. Am. J. Clin. Nutr. 71, 171S-175S. https://doi.org/10.1093/ajcn/71.1.171S PMid:10617967

Das UN. 2006. Essential fatty acids - A review. Curr. Pharm. Biotechnol. 7, 467-82. https://doi.org/10.2174/138920106779116856 PMid:17168664

Farkas T. 1970. The dynamics of fatty acids in the aquatic food chain, phytoplankton, zooplankton, fish. Ann. Biol. Tihany. 37, 165-176.

Fernandes CE, Da Silva-Vasconcelos MA, De Almeida-Ribeiro M, Sarubbo LA, Cardoso-Andrade SA, De Melo-Filho AB. 2014. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 1, 67-71. https://doi.org/10.1016/j.foodchem.2014.03.055 PMid:24799210

Flecker AS. 1996. Ecosystem Engineering by a dominant detritivore in a diverse tropical stream. Ecology 77, 1845-1854. https://doi.org/10.2307/2265788

Guler GO, Aktumsek A, Citil OB, Arslan A, Torlak, E. 2007. Seasonal variations on total fatty acid composition of fillets of zander (Sander lucioperca) in Beysehir Lake (Turkey). Food Chem. 103, 1241-1246. https://doi.org/10.1016/j.foodchem.2006.10.029

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electrónica 4 (1), 9. Retrieved March 2014 from http://palaeo-electronica.org/2001_1/past/issue1_01. htm

Henderson RJ, Tocher DR. 1987. The lipid composition and biochemistry of freshwater fish. Prog. Lipid Res. 26, 281-347. https://doi.org/10.1016/0163-7827(87)90002-6

Huynh MD, Kitts DD. 2009. Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chem. 114, 912-918. https://doi.org/10.1016/j.foodchem.2008.10.038

Inhamuns AJ, Franco MRB. 2008. EPA and DHA quantification in two species of freshwater fish from Central Amazonia. Food Chem. 107, 587-591. https://doi.org/10.1016/j.foodchem.2007.07.032

Innis SM. 2007. Fatty acids and early human development. Early Hum. Dev. 83, 761-766. https://doi.org/10.1016/j.earlhumdev.2007.09.004 PMid:17920214

Innis SM. 2003. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J. Pediatr. 143, S1-8. https://doi.org/10.1067/S0022-3476(03)00396-2

Jabeen F, Chaudhry AS. 2011. Chemical compositions and fatty acid profiles of three freshwater fish species. Food Chem. 125, 991-996. https://doi.org/10.1016/j.foodchem.2010.09.103

Jiménez-Segura LF, Palacio J, López R. 2009. Características biológicas del blanquillo Sorubim cuspicaudus Littmann, Burr y Nass 2000 y bagre rayado Pseudoplatystoma magdaleniatum Buitrago-Suárez y Burr 2007 (Siluriformes: Pimelodidae) relacionadas con su reproducción en la cuenca media del río Magdalena, Colombia. Actual. Biológicas 31, 53-66.

Kalogeropoulos N, Panagiotakos DB, Pitsavos C, Chrysohoou C, Rousinou G, Toutouza M, Stefanadis C. 2010. Unsaturated fatty acids are inversely associated and n-6/ n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. Clin. Chim. Acta 411, 584-591. https://doi.org/10.1016/j.cca.2010.01.023 PMid:20097190

Lavie CJ, Milani RV, Mehra MR, Ventura HO. 2009. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J. Am. Coll. Cardiol. 54, 585-594. https://doi.org/10.1016/j.jacc.2009.02.084 PMid:19660687

Luzia LA, Sampaio GR, Castellucci CMN, Torres EAFS. 2003. The influence of season on the lipid profiles of five commercially important species of Brazilian fish. Food Chem. 83, 93-97. https://doi.org/10.1016/S0308-8146(03)00054-2

Mataix J, Mañas M, Llopis J, Martínez de Vitoria E. 2003. Tabla de composición de alimentos españoles. 4ª ed. Granada: Universidad de Granada.

Mazza M, Pomponi M, Janiri L, Bria P, Mazza S. 2007. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog. Neuro-Psychoph. 31, 12-26. https://doi.org/10.1016/j.pnpbp.2006.07.010 PMid:16938373

Mojica JI, Álvarez-León R. 2002. Prochilodus magdalenae. En: Mojica J, Castellanos C, Usma S, Álvarez R. Libro Rojo de Peces Dulce acuícolas de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. Instituto de Ciencias Naturales Universidad Nacional de Colombia, Ministerio del Medio Ambiente, 91-96. Bogotá D.C., Colombia, pp 288.

Moreira AB, Visentainer JV, Souza NE, Matsushita M. 2001. Fatty acids profile and cholesterol contents of three Brazilian Brycon freshwater fishes. J. Food Comp. Anal. 14, 565-574. https://doi.org/10.1006/jfca.2001.1025

Özogul Y, Özogul F, Alagoz S. 2007. Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chem. 103, 217-223. https://doi.org/10.1016/j.foodchem.2006.08.009

Perea A, Gómez E, Mayorga Y, Triana CY. 2008. Caracterización nutricional de pescados de producción y consumo regional en Bucaramanga, Colombia. Arch. Latinoam. Nutr. 58, 91-97.

Prato E, Biandolino F. 2012. Total lipid content and fatty acid composition of commercially important fish species from the Mediterranean, Mar Grande Sea. Food Chem. 131, 1233-1239. https://doi.org/10.1016/j.foodchem.2011.09.110

Rahman SA, Huah TS, Nassan O, Daud NM. 1995. Fatty acid composition of some Malaysian freshwater fish. Food Chem. 54, 45-49. https://doi.org/10.1016/0308-8146(95)92660-C

Ramos-Filho MM, Lima-Ramos MI, Aiko-Hiane P, Talá-de Souza EM. 2010. Nutritional Value of Seven Freshwater Fish Species From the Brazilian Pantanal. J. Am. Oil Chem. Soc. 87, 1461-1467. https://doi.org/10.1007/s11746-010-1639-1

Rasoarahona JRE, Barnathan G, Bianchini, JP, Gaydou EM. 2005. Influence of season on the lipid content and fatty acid profiles of three tilapia species (Oreochromis niloticus, O. macrochir and Tilapia rendalli) from Madagascar. Food Chem. 91, 683-694. https://doi.org/10.1016/j.foodchem.2004.07.001

Santos-Silva J, Bessa RJB, Santos-Silva F. 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs. II. Fatty acid composition of meat. Livest. Prod. Sci. 77, 187-194. https://doi.org/10.1016/S0301-6226(02)00059-3

Sargent J, Henderson RJ, Tocher DR. 1989. The lipids. In: J.E. Halver (Editor), Fish Nutrition. 2nd edition, Academic Press., San Diego, pp 153-218.

Sidhu KS. 2003. Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharm. 38, 336-344. https://doi.org/10.1016/j.yrtph.2003.07.002 PMid:14623484

Simopoulos AP. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365-379. https://doi.org/10.1016/S0753-3322(02)00253-6

Steffens W. 1997. Effects of variation feeds on nutritive in essential fatty acids in fish value of freshwater fish for humans. Aquaculture 151, 97-119. https://doi.org/10.1016/S0044-8486(96)01493-7

Suzuki H, Okazahi K, Hayakama S, Wada S, Tamura S. 1986. Influence of commercial dietary fatty acids on polyunsaturated fatty acids of cultured freshwater fish and comparison with those of wild fish of the same species. J. Agric. Food Chem. 34, 58-60. https://doi.org/10.1021/jf00067a016

Swapna HC, Rai AK, Bhaskar N, Sachindra NM. 2010. Lipid classes and fatty acid profile of selected Indian fresh water fishes. J. Food Sci. Technol. 47, 394-400. https://doi.org/10.1007/s13197-010-0065-6 PMid:23572659 PMCid:PMC3551015

Tobías-Arias A, Olaya-Nieto C, Segura-Guevara F, Tordecilla- Petro G, Brú-Cordero S. 2006. Ecología trófica de la doncella (Ageneiosus pardalis Lütken, 1874) en la cuenca del río Sinú, Colombia. Rev. MVZ Córdoba 11 Supl (1), 37-46. https://doi.org/10.21897/rmvz.1043

Ulbritch TL, Southgate DA. 1991. Coronary Heart Disease: Seven Dietary Factors. Lancet 338, 985-992. https://doi.org/10.1016/0140-6736(91)91846-M

Published

2020-03-30

How to Cite

1.
Márquez-Fernández PM, Márquez EJ, Ruiz-Villadiego OS, Márquez-Fernández DM. Nutritional value of fatty acids of the Neotropical freshwater fishes Prochilodus magdalenae, Pseudoplatystoma magdaleniatum and Ageneiosus pardalis. Grasas aceites [Internet]. 2020Mar.30 [cited 2024Apr.19];71(1):e342. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1809

Issue

Section

Research